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Pitch Perception

Exactitude is not Truth.

—Henri Matisse

23.1
Overview

The sense of pitch is more subtle than most of us think. It masquerades as
objective but is, in fact, subjective. Pitch is a psychoacoustic phenomenon,
a sensation, akin to hot, cold, or bitter, synthesized for our conscious minds
courtesy of the ear-auditory cortex system. The raw data acquired by the
outer, middle, and inner ear are passed first to the primary auditory cortex,
which in turn produces a kind of executive summary of the sound, suitable
for the busy conscious mind.

What would music be like without the summary sensations of loudness,
pitch and timbre? Imagine instead being aware of all the individual partials
and their relative strengths all the time. Hundreds of them could be
competing for your attention. Music would be nothing like what we are
familiar with. Far too much raw data would flood our consciousness.

Hearing a pitch does not mean that a partial or even a tone (a sound with
partials related to the perceived pitch frequency) is present at the perceived
pitch frequency. Pitch is perceived even for sounds that are aperiodic, such
as a chime, whose partials are not evenly spaced; indeed, the perceived pitch
does not coincide with any partial present.

The reader may object that on the contrary, pitch is quantitative. After
all, some people have perfect pitch, meaning that they can name a note or
hit the right key on the piano on the first try. Pitch, as we will see, is indeed
quantitative in the sense that it is keyed to features in the autocorrelation of
sounds. If you have perfect pitch, it is because you can match a signal with
a prominent peak in the autocorrelation of the sound at, say, 0.0051 second
with a key on the piano with a prominent peak in its autocorrelation at the
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same time. You will have hit the key G3. (Pitch is specified by non-perfect-
pitch listeners by selecting a frequency of a pure partial that is judged to
have the same pitch as the sound in question.)

Many sounds have no identifiable pitch. Other sounds may seem to have
no pitch, but in fact a melody may emerge from a succession of similar
sounds. Sets of wooden blocks have been fabricated going back to the
nineteenth century to demonstrate this. If a block is dropped on a hard
floor, the sound might be identifiable as containing frequencies in some
range, but not possessing a pitch of any specific frequency. This impression
might be reinforced by recording and Fourier analyzing the sound—it
might show a range of seemingly unrelated frequencies. Yet if a number
of similar carefully chosen blocks are dropped in succession, a familiar
melody can force itself on the listener. Since melody is based on pitch, there
must be a pitch present—at least when it is called to our attention. There
is no correct answer to whether a pitch is present in the sound of a wood
block, since the human subject is the ultimate authority, by definition. If
the pitch was not heard, it was not present.

It is difficult to reason in a detached way about subjective sensations. If
two people are coming from a different place in that debate, then something
obvious to one person might be vehemently rejected by the other. This is
a recipe for debate going around in circles, and indeed today you can find
the same controversies that flared up in the mid-1800s.

23.2
Pitch Is Not Partial

The pitch of a 100Hz pure sine tone is clearly 100Hz; and that of a pure
200Hz sine tone is of course 200Hz (figure 23.1). In these cases, pitch
and partial coincide in frequency. What is the pitch of both partials played
together (figure 23.2)? It is not immediately clear that there will be a single
pitch in the resulting complex tone. After all, there are two quite distinct
partials present, well separated, and of equal power, so perhaps we register
the presence of both, and report hearing the two partials present, one as
important as the other. There would be nothing wrong with a hearing
system that did this. But this is not what usually happens. The sensation of a
single 100Hz pitch usually prevails when both partials are played together.
In this case of only two partials, one might become conscious of both at all
times, especially if the partials had just been presented individually. But no
one hears 10 separate “pitches” when 10 partials have significant strength.

Suppose now that we decrease the amplitude of the first 100Hz partial
(figure 23.3). Try this experiment in Jean-François Charles’s MAX patch
Partials or Paul Falstad’s Fourier, but adjust the partial strengths with the
sound off, since otherwise your attention will be drawn to them. At first, the
pitch remains 100Hz, and again we can still hear both partials with some

100 300 500 700 900

Pitch = 100 Hz

100 300 500 700 900

Pitch = 200 Hz

Figure 23.1
The pitch of these two partials is
unambiguous.
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100 300 500 700 900

Pitch = 100 Hz

Figure 23.2
What is the pitch if both partials are played?

100 300 500 700 900

Pitch = 100 Hz

100 300 500 700 900

Pitch = 100 and 200 Hz?

Figure 23.3
How does the pitch change as amplitudes
change?

100 300 500 700 900

Pitch = 100 Hz

100 300 500 700 900

Pitch = 200 Hz

Figure 23.4
Two complex tones sharing some partials,
but with very different pitch.

concentration. If the 100Hz partial is decreased toward zero amplitude,
there will be only a pure 200Hz sine tone remaining, so at some point
the pitch has to switch to 200Hz. This switch cannot be sudden: you are
unlikely to hear a definite pitch of 100Hz when the amplitude of the first
partial is 5% of the 200Hz amplitude, and then suddenly hear a definite
pitch of 200Hz when the amplitude of the first partial decreases to 4%.
There must be a transition region, where both pitches are evident even if
you are not trying to listen analytically. These sorts of “twilight zones” for
pitch are commonplace.

Discussions of pitch often mention only frequencies, and not am-
plitudes. Granted, the perceived pitch may not change much for wide
variations of the amplitudes, but it will change if the amplitude changes
become extreme enough. Any discussion of pitch should include mention
of the amplitudes or power spectrum used—distrust any theory or opinion
that does not. Incredibly, that will eliminate most of the theories out there!

The distinction between the perceptual, subjective nature of pitch, in
contrast to the analytic, quantitative nature of partials, is reinforced by
the missing fundamental effect, first brought to light by August Seebeck
using sirens in the 1840s (see section 23.4). In the last example, we
dropped the 100Hz partial, leaving only a 200Hz remaining partial and
ending with a 200Hz pitch. This is not surprising. However, the situation
changes drastically if there are higher harmonics present initially, as in
100Hz+ 200Hz+ 300Hz+ 400Hz+ 500Hz partials of equal amplitude.
This complex tone has a pitch of 100Hz. This time, when we drop the
100Hz partial, leaving 200Hz + 300Hz + 400Hz + 500Hz partials, we
hear a 100Hz pitch, not 200Hz as before. Another path to the same end
is to add 300, 400, 500, . . .Hz partials to a pure 200Hz partial. Before
the addition, the pitch was 200Hz. All the new partials are higher in
frequency than 200Hz, yet a lower 100Hz pitch develops again with no
100Hz partial present. The pitch is the frequency of a fundamental that is
missing.

J. F. Schouten of the University of Eindhoven coined the term residue
pitch in 1940 for the presence of a perceived pitch that is missing a partial
at the same frequency, or even any nearby harmonics of that frequency.
Giving a concept a name is extremely important, but apparently this came
so late in the (by then) nearly 100-year-old controversy that people still
trip over the issues. Residue pitch is a better term than the commonly used
missing fundamental effect, since the latter phrase implies some sort of
auditory illusion, which is not correct. The residue pitch is no more an
illusion than is a yellow spot of light, when in fact the spot is made up of
overlapping red and green beams. The result is indistinguishable to our
eyes from a single yellow beam. This is not an illusion; this is the way our
visual system is built and is supposed to act. So it is with the residue pitch:
we hear a 100Hz pitch, whether or not the 100Hz partial is there. The
executive summary sensation of pitch reports the period or more generally
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the presence of peaks in the autocorrelation of the sound, as we emphasize
in the following.

MAX Partials or Falstad’s Fourier can be used to check the residue pitch
effect. Listen carefully for the presence of a 200Hz sinusoidal partial with
only partials 400, 600, 800, 1000, 1200, and 1400 present. You won’t hear a
200Hz partial at low sound intensities, yet a 200Hz pitch will prevail. The
200Hz partial is not there in the original sound, nor is it created for us by
any part of the hearing system from the outer ear to the auditory cortex.
What is created by that system is the sensation we call pitch. Pitch is not
partial.

23.3
Pitch Is Not Periodicity

If pitch is not partial, the next line of defense might be that pitch is
periodicity: the 100 + 200Hz partials combined have an unambiguous
100Hz periodicity—which might be used to “explain” why 100Hz is
the pitch heard. (See section 3.9 for a discussion of the periodicity of
combinations of partials.) Early in his remarkable On The Sensation of
Tone as a Physiological Basis for the Theory of Music (English edition,
1875), which is even today a foundation for psychoacoustics, Helmholtz
states that pitch is periodicity. But consider this combination: 120, 220,
320, 420, 520, and 620Hz in equal measure. The periodicity is 20Hz,
but the pitch is 104.6Hz! Similar examples are examined quantitatively in
sections 23.10 to 23.17.

If pitch is not determined by periodicity, perhaps then by autocorrela-
tion? Now we are getting somewhere. The first major peak in the auto-
correlation after the ever-present peak at time 0 in the preceding example
occurs at 0.00956 second, which corresponds to 104.6Hz. If sounds resolve
into several distinct pitches, these will have corresponding peaks in the
autocorrelation. Pitch is associated with something more important than the
presence or absence of a single partial: its tendency to repeat itself at given
intervals. The generalization of this concept to sounds that are not strictly
periodic is the autocorrelation function. Periodic signals will always have
peaks at multiples of the period that mirror the peak at time zero. The
analogs of such periodicity are peaks in the autocorrelation of nonperiodic
signals. We will explore the autocorrelation theme extensively in sections
23.10 to 23.17.

23.4
Pitched Battles

The subject of pitch perception heated up in the mid-nineteenth century
with a debate between physicists Hermann vonHelmholtz and Georg Ohm
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Figure 23.5
The four nineteenth-century principals in
the theory of pitch: Helmholtz, Ohm,
Seebeck, and Koenig.

on one side and Rudolf Koenig and August Seebeck on the other
(figure 23.5). They went to extreme lengths to try to achieve control of
sound sources in order to settle ambiguities of human hearing. At some
risk of oversimplification, we can state in a few words what the controversy
is all about: Are human beings essentially walking Fourier analyzers?

The debate continues today, although it is slightly more subdued. In this
chapter, we take a partly historical view, not only because of the fascinating
personalities involved, but also because the old controversies are still in
play today and still pose the appropriate questions. In so doing, readers
will be empowered to form opinions on the controversies based on their
own hearing, using modern apparatus that it is fair to say the principals
mentioned earlier would have paid dearly for. It is far from the truth to
say that everything is presently understood. Beautiful ideas that “ought" to
be right, but unfortunately aren’t, die hard. Some are still in the process of
expiration.

Hermann von Helmholtz (1821–1894) was a towering figure in
nineteenth-century physics. His theory of dissonance and musical har-
mony holds sway today; we discuss it at greater length in chapter 26.
Helmholtz was perhaps the most renowned physicist of his day, brilliant
and dominant in almost everything he did, including physiology, the theory
of color vision, and the invention of the familiar ophthalmoscope used
to examine the retina. Helmholtz was a talented musician and an expert
in music theory. Thus he was in his element when dealing with both the
physics and psychophysics of hearing and perception.

Georg Ohm (1789–1854) had a checkered academic career, partly
university trained, partly self-taught, and later sometimes a high school
teacher, sometimes a professor. Famously, he discovered the basic law
of electrical resistance, which bears his name. Less famously but more
important for this book, a second law also bearing his name pertains to
the decomposition of arbitrary periodic sounds into sinusoidal partials.
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August Seebeck (1805–1849) was a schoolmaster and physicist in Dres-
den, Germany, and son of physicist Thomas Seebeck, the discoverer of the
thermoelectric effect whereby a voltage and electrical current is generated
by a temperature gradient. Seebeck never held a university professorship
(he was the head of the Technische Hochschule in Dresden), and he died at
age 44. Using sirens, in 1841 he discovered the residue pitch effect wherein
a pitch of frequency f is heard even though the only partials present
are higher harmonics of f . Seebeck performed many other important
experiments with sirens. Seebeck’s scientific talents were not lost on Ohm
and Helmholtz.

Rudolph Koenig (1832–1901) was an instrument builder par excellence.
He spared almost no effort to create clean and concise experiments to test
various aspects of human hearing, pitch perception, and phantom tone
perception. See box 25.2 for more about this remarkable scientist-artisan.

23.5
The Siren

The siren played a key role in removing the umbilical cord that connected
pure partials with pendular (sinusoidal) motion. It was a revelation that the
extremely nonsinusoidal successive puffs of air pressure from a siren still
produce upper partials that a trained ear can hear out as sinusoidal, ringing
as true as if from a tuning fork. The physical fact that the partials were
there but the disturbance creating the sound was nothing like a sinusoidally
vibrating surface led Ohm to a new framework for understanding periodic
sound in terms of Fourier’s theorem.

Ohm realized that the source does not have to physically execute
pendular vibrations in order to produce pendular, sinusoidal partials. The
ear can’t know what the source was physically doing, it hears only regular
pulsations. The regular pulses can be mathematically Fourier analyzed into
equally spaced sinusoidal partials. Despite this mathematical truth, it is
still remarkable that the ear can perform such a Fourier decomposition.
Ohm’s contribution was twofold: not only is the decomposition of periodic
tones into sinusoids always possible mathematically, but the sinusoids are
really present, whether or not the sound was produced by pendular action.
Ohm thus put this major misunderstanding (that the object producing the
sound had to be manifestly sinusoidal in its vibration pattern) to rest by an
application of Fourier’s law. Strangely, he botched some important details
(see section 23.8).

Jean-François Charles’s MAX Siren (available on whyyouhearwhatyou-
hear.com) is a flexible siren simulator that can be used to reproduce many
key experiments. Paul Falstad’s Fourier or Charles’s MAX Partials can be
used to reveal the partials required to create a series of puffs.
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23.6
Ohm’s Law

The importance of the connection between sinusoidal waveforms and the
pure tones—single partials—cannot be overemphasized; it is the one fixed
boulder among many rolling stones in the field of pitch perception. It was
Ohm who made this connection explicit. Helmholtz gave it legitimacy by
making the connection a centerpiece of his work.

Ohm realized that only the sinusoid waveform yields the sensation of a
colorless tone, a pure partial. Any embellishments to this sound taking the
waveform away from a pure sinusoid requires higher harmonics (higher
partials) to describe.

Ohm’s advance was slow to diffuse its way into the fledgling world of
psychoacoustics. According to the prevailing notion, the ear was supposed
to be receiving souvenirs of motion in the object generating the sound.
Ohm understood that, on the contrary, any periodic undulation could
be decomposed into pendular (sinusoidal) components, and each partial
would sound just as bright and clear whether some object vibrated exclu-
sively at one frequency or at many frequencies at one time. Indeed, this was
a straightforward application of Fourier’s law from early in the century, but
like somany other things in psychophysics, it is not always clear that nature
has decided to follow the path of the mathematicians.

What about nonperiodic sounds, such as a chime? These too fall into the
domain of the Ohm-Helmholtz laws—the partials in a chime tone are also
pure sinusoids, except that they are not harmonically related.

Ohm’s 1843 paper was unfortunately simultaneously pompous and
muddled, as if to mask a measure of self-doubt. Helmholtz saw the
significance of the paper more clearly than its author. Summing up what
Ohm had done, Helmholtz said, “the proposition enunciated and defended
by G. S. Ohmmust be regarded as proven, viz. that the human ear perceives
pendular [sinusoidal] vibrations alone as simple tones.” This is true, and of
unsurpassed importance in sound perception. But then Helmholtz reveals
his own obsession with the human ear as a Fourier analyzer by continuing
“and resolves all other periodic motions of the air into a series of pendular
vibrations, hearing the series of simple tones which correspond with these
simple vibrations” (emphasis is Helmholtz’s).1 It is true that all periodic
motions of the air can be resolvedmathematically into a series of pendular
vibrations, but only the best, trained, or prompted ears can parse the sound
into its partials,. and then only some of the partials. Even possessors of such
ears normally listen holistically rather than performing the harder work of
“hearing out” individual partials.

1From Helmholtz’s On the Sensation of Tone, p. 56.
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By 1937, Dayton C. Miller of Case School of Applied Science (now Case
Western Reserve University), himself a formidable figure in the acoustics
of his day, stated Ohm’s law as follows:

that all musical tones are periodic functions; that the ear perceives
pendular [sinusoidal] vibrations alone, as simple tones; that all vari-
eties of tone quality or tone color are due to particular combinations
of a larger or smaller number of simple tones of commensurable
frequencies; and that a complex musical tone or a composite mass
of musical tones is capable of being analyzed into a sum of simple
tones.2

It could not be stated better.

23.7
Seebeck’s Mistake

Before Ohm’s work, the sinusoid–pure partial connection had been blurry
in several respects. Some observers thought that waveforms other than
sinusoidal could also be perceived as pure partials, as long as they were
periodic. August Seebeck fell into this trap, when trying to explain how it is
that 100Hz wins so handily in the simple “competition” for perceived pitch
between 100 and 200Hz (and higher) pure partials when they are both
present. Seebeck supposed that somehow the 200Hz component could
add to the strength of the 100Hz pure tone—that is, that the 100Hz pure
tone could be made louder by adding in some higher sinusoid of shorter
but commensurate period. Seebeck arrived at this notion by throwing the
presence of the period-reinforcing upper partials onto the lowest partial.
He could not have meant this in a mathematical sense, since it violates
Fourier’s theorems, but rather in a physiologic sense. However, a strong
sense of a 100Hz pitch that accompanies the series 200, 300, 400, . . .Hz
is not that of a 100Hz fundamental sinusoidal partial. That sensation is
absent, it cannot be “heard out,” even though a 100Hz pitch is definitely
heard. Once again, pitch is not partial, a fact that both Helmholtz and
Seebeck failed to see clearly.

23.8
Ohm’s Blunder

The power of the (trained or prompted) ear to parse partials out of a tone
induced both Ohm and Helmholtz to overplay the Fourier role in pitch

2D. Miller The Science of Musical Sounds, Macmillan, New York, 1926.



October 9, 2012 Time: 09:34am chapter23.tex

Chapter 23 Pitch Perception 445

perception. This, in turn, probably caused Ohm to make a mathematical
blunder. Helmholtz also could not resist the Fourier deconstruction of
tone, and substituted his own idea of nonlinear effects to account for the
pitch in the presence of missing partials.

Fourier’s theorem allowed Ohm to write:

s (t) = a1 sin(2π f t + φ1)+ a2 sin(4π f t + φ2)+ a3 sin(6π f t + φ3)+ · · · .

Ohm knew that each of the terms on the righthand side corresponded to a
different partial that could possibly be heard out by analytic listening. This
much is true, but by itself it suggests a kind of democracy of partials, and
doesn’t explain our sense of pitch or, for example, the case of 100Hz and
200Hz, wherein a 100Hz pitch is reported unless it is many times weaker
than 200Hz.

Ohm needed to explain why a siren with all its partials, many much
stronger than the 100Hz fundamental, should have a 100Hz pitch if 100
holes were passing by the source of air per second. In fact, the lowest
partial in a siren is usually quite weak. Conveniently for his prejudices, in
the course of his lengthy and rather overly formal analysis Ohm made a
mathematical blunder, which caused him to tremendously exaggerate the
strength of the fundamental partial a1 when the siren is emitting a sound
with pitch f—that is, when f holes per second are being exposed to the air
hose. Seebeck pointed out the mathematical error in a paper about his own
experiments and theory concerning the operation of the siren. Apparently,
Ohm was deeply embarrassed; his overly formal paper seemed hollow in
the face of such a mistake. Ohm got out of the field of acoustics altogether,
but it turned out he had underestimated his own contributions.

After putting Fourier’s theorem in proper context and connecting it with
our ability to hear partials individually, Ohm and Helmholtz focused too
much on the ear’s analytic Fourier analysis capabilities, never assigning
a role to any holistic synthesis. When it came to explaining pitch, Ohm
couldn’t let go of the idea that what we hear is a collection of partials, so no
pitch could be heard unless there was a partial present at that frequency.

23.9
Helmholtz Falls Short

Helmholtz didn’t do much better, although this point is still controversial.
Helmholtz knew that Ohm was correct about the principle of Fourier de-
composition of sound into pure partials, although he too must have winced
at Ohm’s mathematical blunder. He would also have been frustrated by
Seebeck’s confusion about the strength of the lowest partial depending on
upper partials, exactly the point that Ohm had cleared up. But Helmholtz
needed some other way to explain why a pitch of 100Hz needed little or no
power at 100Hz in the tone. Here, he would soon make his own gaffs.
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Helmholtz began by using bottles as resonators to detect partials, but
Rudolf Koenig optimized them in brass (see figure 13.3), making a cavity
with a large opening with a very short neck on one side and a small nipple
on the other for insertion into the ear. These are the famous Helmholtz
resonators, and as with other Helmholtz inventions, they were turned into
something of an art form by Koenig, prized by museums of scientific
instruments today. These resonators are relatively high Q and respond only
to a very narrow range of frequencies. With them, Helmholtz could easily
verify the presence or absence of an objective partial at a perceived pitch,
since it would be so much enhanced if present.

The principle is not near-field capture (NFC), since the source may not
be close by, nor is the source made louder, except inside the resonator. The
idea is to set up a Helmholtz resonance in the usual way and then listen to
what is happening on the inside of the resonator. The sound is much louder
there, but we normally cannot hear it.3 However, if a small nipple protrudes
out the back of the resonator, tightly sealed in the ear canal, the nipple and
short air cavity leading to the tympanum become part of the inside cavity.
The tympanum is subjected to the full SPL inside the resonator, greatly
enhancing any partial present at the resonator’s frequency. This is why
Helmholtz resonators work so well, a fact seemingly almost forgotten since
Koenig’s day.

Helmholtz knew that a pitch at frequency f could be heard with very
weak or absent partials at f , since his resonators failed to find them in
some circumstances. His theories of combination tones, to be taken up in
chapter 25, appeals tomechanical nonlinear interactions in the ear to create
the fundamental partial missing in the arriving signal. This idea, which
once again confused pitch and partial, does not stand up to scrutiny.

This error by such a great scientist is surprising, and reflects how
even the best scientists struggle with objectivity when the subject of their
experiments is themselves. In his bookOn the Sensation of Tone, Helmholtz
reveals just how comfortable he is with problems of perception, freely
acknowledging of the role of synthetic listening:

We . . . become aware that two different kinds or grades must be
distinguished in our becoming conscious of a sensation. The lower
grade of this consciousness, is that where the influence of the sensa-
tion in question makes itself felt only in the conceptions we form of
external things and processes, and assists in determining them. This
can take place without our needing or indeed being able to ascertain
to what particular part of our sensations we owe this or that relation
of our perceptions. In this case we will say that the impression of
the sensation in question is perceived synthetically. The second and

3Except inside a car traveling down the highway with one window open. However, our hearing
is not sensitive to sound at the frequency produced, but the SPL is so high that we can feel it!
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higher grade is when we immediately distinguish the sensation in
question as an existing of the sum of the sensations excited in us. We
will say then that the sensation is perceived analytically. The two cases
must be carefully distinguished from each other.

It is all the more surprising after this eloquent summary that Helmholtz did
not assign a synthetic role to the sensation of pitch. Moreover, Helmholtz’s
theories of “tokens” or “signs” were part of a sophisticated understanding
of epistemology that could have cleared this up, but instead he followed
Ohm, apparently failing to recognize pitch as one of his tokens! Helmholtz
dismissed pitch as periodicity, sidestepping issues of missing fundamentals
and nonperiodic tones. Later, in discussing combination tones, Helmholtz
wrongly attributes the perceived pitch to a partial created in the ear by
nonlinear interactions as we mentioned earlier. (This may actually happen
for very loud tones, however.) Helmholtz apparently thought that hearing a
tone or pitch of f meant a partial at f had to be present, but his discussion
is ambiguous because he is imprecise about the presence of pure partials
in the perceived tone. This absolutely key point was muddled up in On
the Sensation of Tone, for, as his translator, John Ellis, said, “Even Prof.
Helmholtz himself has not succeeded in using his word Ton consistently
for a simple tone only” (that is, a simple partial). This is the one thing he
should have made crystal clear, but he repeatedly fails to do so: Does one
always hear a sinusoidal partial oscillating at any given perceived pitch? The
answer is, clearly, no, but Helmholtz never quite framed the question this
way.

The key point is not to confuse pitch with presence of a partial at the
frequency of the perceived pitch. Create the tone 200+400+600+800Hz,
in Fourier or Partials, and then raise and lower the amplitude of the 200Hz
partial, all the way to zero. Concentrate on what a 200Hz partial sounds
like, and try to hear it when it is at zero amplitude. You won’t hear that
partial, but you will hear the 200Hz pitch.

Three of four excellent scientists made serious but different mistakes
when trying to explain the dominance of the lowest “root” fundamental
in pitch perception, whether or not a partial is actually present at the
root frequency. Again, the fact that such talented people made mistakes
testifies to the pitfalls associated with trying to be objective about one’s own
subjective sensations.

23.10
ADramatic Residue Pitch Effect

To drive an important point home, consider figure 23.6 (and the sound
file 50Hz Missing Fund, available on whyyouhearwhatyouhear.com). This
track begins with a 200Hz periodic tone with partials at 200, 400, and
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Figure 23.6
The sound trace for the transition region
for the example audio file,
50HzMissingFund. Up to about 1.9
seconds, the sound is an ordinary complex
200 Hz tone with three partials, but after
2.1 seconds it has a partial every 50 Hz
starting at 200 Hz and ending at 650 Hz.
This latter progression has a 50 Hz
frequency—four times smaller than the
200 Hz frequency at the beginning. This
longer period can be seen in the trace
after 2 seconds. A strong sensation of
50 Hz sound emerges as the new partials
come in, but there is no 50, 100, or 150 Hz
component at all. The autocorrelation
functions (bottom) reveal the transition
from a 200 Hz pitch to a 50 Hz pitch.

600Hz. The power spectrum is shown at the upper left in figure 23.6;
the corresponding sound trace is shown in the first part of the middle
panel. The autocorrelation is shown at the lower left. The pitch heard is
200Hz, and the autocorrelation has a prominent peak at 1/200= 0.005 s.
Starting just before 2 seconds into the file, partials at 250, 300, 350, 450,
500, and 550Hz are added. Despite the fact that all of these partials are
higher in frequency than the original perceived pitch and higher than the
lowest partial originally present, the pitch drops by two octaves to 50Hz!
There is no 50, 100, or 150Hz component at all. The T = 0.02 second
periodicity, corresponding to 50Hz, is clearly seen after the 2-second mark
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in the sound trace. The GCD of 200, 250, 300, . . . is of course 50Hz, which
as we discovered in section 3.9 is the period of the combination of the
preceding partials. The autocorrelation now has its first prominent peak
at 1/50= 0.02 s, as seen in the lower right.

Truth or Illusion?

The acoustics group at the University of New SouthWales dubs the residue
pitch effect an “auditory illusion,” which is another way of saying that pitch
is not really there. This is compatible with the idea that pitch is a sensation
like hot or cold, but perhaps the word illusion is too strong, because it is by
design that we process pitch the way we do.

When confronted with the strong dominance of the fundamental over
higher partials in musical tones, Ohm also referred to auditory illusions
or tricks that the mind was playing. He viewed this as some kind of an
anomaly, rather than a necessity or at least a preference of the humanmind.

We prefer the terms executive summary or token of reality rather than
illusion, since many illusions, especially visual ones, are unexpected and
sometimes just plain weird side effects of the way our sensory systems
work. The sensation of pitch is not a weird side effect. It serve a purpose. If
something is vibrating at 100Hz, we are much better off hearing a 100Hz
pitch, which is telling us the truth: the object is vibrating at 100Hz. The
fourth overtone partial at 400Hzmight be the loudest frequency arriving at
our ears, and 100Hzmay be absent, but whywould wewant to be distracted
by that? The pattern of partial strengths is cast into the sensation of timbre.

Small speakers in a laptop are very poor at creating low-frequency
sound. If an object producing the sound is much smaller than the typ-
ical wavelengths of the sound produced, the pressure (force) and the
acceleration at the surface of the object are nearly in phase, as explained
in section 7.11. Once the object is appreciable in size compared to the
wavelength, it is possible for the force and velocity to be more nearly in
phase, greatly enhancing the work done on the air by the vibrating object,
and therefore its loudness. Small laptop speakers can produce only a very
weak tone if driven sinusoidally at 100Hz (wavelength about 3.5 meters,
much larger than the speakers). However, because of the residue pitch
effect, the same speaker producing a 100Hz complex tone gives rise to the
strong sensation of a 100Hz pitch, in spite of the near total absence of a
100Hz partial, and a very weak 200Hz partial.

23.11
Autocorrelation and Pitch

The dramatic change from a 200Hz pitch to a 50Hz pitch after adding
partials no lower than 250Hz was accompanied by a shift in the first large
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peak in the autocorrelation from 5ms to 20ms—that is, the inverse of
200Hz and 50Hz, respectively. The 50Hz pitch was heard in the absence
of the first three partials—namely, 50, 100, and 150Hz.

The idea that autocorrelation is what determines pitch came rather late,
only in 1951, suggested by J.C.R. Licklider. The notion seems to have had a
rather lukewarm reception in the literature ever since, yet autocorrelation
is what pitch estimators use in many sound analysis programs, such as
Praat and Audacity. Physiologically, it is not clear whether autocorrelation
is literally computed in a neural circuit or merely strongly related to
whatever is. The autocorrelation idea is an example of a temporal theory
of pitch perception. We will expand on how autocorrelation may be used
to determine pitch shortly, but it works so well in so many circumstances
that it seems safe to say this: Beware of any theory of pitch perception that
entirely leaves out autocorrelation.

Autocorrelation was defined in chapter 4. It can be constructed from
the power spectrum, and is therefore equivalent to it. A peak in the
autocorrelation function at a time τ means that the function tends to be
similar to itself at times t and t + τ , for all t. Unlike periodic sounds, which
are strictly correlated with themselves (doing the same thing at the same
time intervals forever), a less than perfect correlation peak (peak height less
than one) only implies a tendency to mimic what came a time τ before.

The autocorrelation predicts the residue pitch effect. In this case, the
peaks in the autocorrelation function reflect what we already knew from
the periodicity of the sound. Strict periodicity is reflected in autocorrelation
peaks that are as prominent as the first peak at time zero. The ultimate
test of the autocorrelation idea involves perceived pitches of nonperiodic
sounds.

An early, tall, isolated peak in the autocorrelation function will deter-
mine a perceived pitch, as the inverse of the time of the peak. Clearly,
given some wiggly autocorrelation function, notions of early, tall, and
isolated are qualitative at best. However, this is just as it should be.
Pitch is itself qualitative—its sensation can be weak or strong, there can
be more than one pitch present, and attention can be focused on each
pitch separately. (Just as we can hear out partials, we can also hear out
separate notes—separate collections of partials—even though this ability
may require contextual cues.)

23.12
A Simple Formula for Pitch

A simple, approximate formula for the pitch seems to work very well in
a reasonable range of circumstances. The idea is to find a good approx-
imation to the time of early, tall autocorrelation peaks, given the set of
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amplitudes and frequencies as input. At the top of this peak, the slope of
the autocorrelation function is zero; an approximation is developed for the
time of such a peak, and then its inverse gives the frequency.4 Given a set
of frequencies fn and amplitudes an (power pn = a2n), the virtual pitch f̄
that will be heard is given by

f̄ ≈

∑
n
a2n f 2n

∑
n
a2nNn fn

=

∑
n

pn f 2n
∑
n

pnNn fn
, (23.1)

where Nn is an integer depending on fn: Nn = [ fn/ f̄ ], where [. . . ] is
the integer nearest to the quantity inside the brackets—for example, [5.23]
= 5; [4.9]=5. This definition is slightly circular in that f̄ depends on the
integers Nn, which itself depends on f̄ , but in practice a self-consistent set
of integers can usually be found.

As a test of the formula, we try the frequencies 820, 1020, and 1220Hz
of equal amplitude. The GCD of 820, 1020, and 1220 is 20, right at the
threshold of hearing. This pitch seems an unlikely perceptual result of
combining these much higher frequencies. In his book The Science of
Musical Sound, John R. Pierce cites this case as an interesting example and
reports that the perceived pitch is 204Hz; formula 23.1 using N1 = 4, N2 =
5, N3 = 6 gives 203.9 for amplitudes a1, . . . = 1, 1, 1. (Pierce did not
report the amplitudes, but, by experimenting with the formula, it is found
that the frequency is onlymildly sensitive to themwithin reasonable limits.)
Figure 23.7 makes the situation clear. The autocorrelation function is
shown as a thick black line, and the individual cosine terms contributing to
the autocorrelation are shown in color. The small numerals near the peaks
of the cosines count the number of full oscillations starting at time equal to
zero. Near time t = 0.0049, the 820Hz frequency has oscillated four times,
the 1020Hz frequency five times, and the 1220Hz frequency six times; thus
N1 = 4, N2 = 5, N3 = 6. A large peak rises at t = 0.004904, since all three
cosines return to 1 near this time, although not exactly at the same time.
The corresponding frequency is f = 203.9 = 1/0.004904Hz. In spite of
earlier recurrences (peaks), which would correspond to higher frequency
pitches, this later recurrence is much stronger and dominates our sense
of pitch. Precise measurement of the recurrence time from the autocorre-
lation function and formula 23.1 both give f = 203.9Hz. By plotting the
autocorrelation function for a much longer time (figure 23.8), we can easily
see why 20Hz is not the perceived pitch. There aremany strong recurrences
reached before 50ms, which is the time corresponding to 20Hz, and even

4In calculus language, we take the derivative of the autocorrelation and set it equal to
zero, dc(τ )/dτ = 0, and search near the recurrence we’re looking for. Using the approximation
sin(x)≈ x, valid for small x, we get formula 23.1. This formula was first used in 1982 in the context
of molecular spectroscopy, by J. Zink and the author.
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Figure 23.7
Autocorrelation function (black curve)
analyzed for the perceived pitch
corresponding to frequencies 820, 1020,
and 1220 Hz with equal amplitudes. The
autocorrelation function is the sum of the
cosines shown in color.
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Figure 23.8
Longer time autocorrelation function
analyzed for the perceived pitch
corresponding to frequencies 820, 1020,
and 1220 Hz with equal amplitudes. The
autocorrelation function has a perfect
recurrence at 50 ms, but it is only slightly
higher than the many that have come
before.

though the strongest one (by a slight amount) occurs then, apparently the
earlier peaks have drawn our attention to higher pitches.

A similar problem was considered by R. Plomp in 2001 (R. Plomp, The
Intelligent Ear), using the frequencies 850, 1050, 1250, 1450, and 1650Hz,
which have a GCD of 50Hz. Plomp reported that people perceive “about
210”Hz. The autocorrelation function peak suggests 209.2; and formula
23.1 using N1 = 4, . . . , N5 = 8 gives 209.13 for amplitudes a1, . . . =
2, 2, 1, 1, 1. Plomp did not seem to favor the autocorrelation idea; he
advanced several other explanations for the apparent frequency shift.

We can check the autocorrelation formula against the class of examples
suggested by Rausch and Plomp,5 who plotted the residue pitch (they

5R. A. Rausch and R. Plomp, “The Perception of Musical Tones,” in The Psychology of Music,
ed. D. Deutsch, Academic Press, New York, 1982.
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Figure 23.9
Residue pitch against c, for the series
200 + c, 400 + c, 600 + c, 800 + c, 1000 + c,
for c on the interval (350, 950). Black lines
and numbers: Results of Rausch and Plomp.
Red lines and numbers: Autocorrelation
results (both numerical and from
formula 23.1—they are very close to each
other). The appropriate integers Nn to use in
formula 23.1 are shown in red at the top.

called it the low pitch) against c , for the series 200 + c, 400 + c, 600 +
c, 800 + c, 1000 + c , for c on the interval (350, 950). Their results, based
on experiments with volunteer subjects, are shown in figure 23.9, taken
from the article in Deutsch’s book, The Psychology of Music, along with
our autocorrelation results. As c is increased, the appropriate integers Ni
change, and are given at the top of the figure. The pitch obtained by
autocorrelation (either by numerical peak finding, or from our simple
formula 23.1—the results in this case differ by less than 1Hz over the
whole range) are shown in red. It is seen that the autocorrelation gives
an essentially perfect estimate of the perceived pitch. At 1100, 1300, and
1500Hz, there is an abrupt discontinuity in pitch, and at those frequencies
the dominant pitch is indeed ambiguous.

The residue pitch formula estimates the time of maxima in the auto-
correlation function, and therefore the corresponding pitch frequency. We
can change which peak is being estimated by adjusting the Ni . However,
this does not say which pitch dominates in marquee effect cases (see the
following).

23.13
Examples: Autocorrelation and Pitch

A periodic signal with period T is perfectly correlated with itself at
multiples of the period: whatever its value at time t, it is duty bound to be
the exactly same a time T later, or any multiple of that time later. Likewise,
c(nT ) = 〈y(t)y(t + nT )〉 = 〈y(t)2〉 = c(0) is perfectly correlated, where n
is an integer. So, for a periodic signal, we expect the autocorrelation c(τ ) to
be big at τ = 0, and the same value again at times τ = nT . In terms of our
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Figure 23.10
A: A “normal” power spectrum based on a
100 Hz fundamental (left), and its
autocorrelation (right). Notice the periodic
revival at T = 0.01, 0.02, . . . second. B:
With the fundamental removed (left), the
autocorrelation (right) is still periodic, with
the earliest strong revival again at
τ = 0.01 second. C: By increasing the
strength of the 200 Hz second partial, a
revival at τ = 0.005 second begins to
form. Eventually, this becomes the
dominant early revival, and our ear-brain
system will switch over to hearing a 200 Hz
tone, rather that the 100 Hz residue pitch.

formula,

c(τ ) = a21 cos(2π f τ ) + a22 cos(4π f τ ) + a23 cos(6π f τ ) + · · · . (23.2)

This is clearly periodic with period T = 1/ f as expected. Since cos(0) =
cos(2nπ) = 1, the correlation is large and positive at τ = 0 and every pe-
riod T thereafter.We show c(τ ) for a typical periodic tone in figure 23.10A.
Figure 23.10B shows the power spectrum and autocorrelation in A with
the fundamental at 100Hz removed. Last, in C, we see the spectrum and
autocorrelation with the fundamental at 100Hz still removed, but with the
second partial at 200Hz boosted. Now we notice a stronger, but still not
dominant, revival at τ = 0.005, although the periodicity is still T = 0.01
second. If the 200Hz partial towers over all others, we will start to hear a
200Hz pitch.

What does our pitch formula predict in the case of the residue pitch
effect—for example, (200, 300, 400, . . .)—as the amplitudes of the par-
tials are varied? The GCD of (200, 300, 400, . . .) is 100, and the period
T = 1/100, the same as if the fundamental were present. The period
corresponds to a frequency of 100Hz, but the lowest frequency present is
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200Hz. We have

f̄ ≈

∑
n
a2n f 2n

∑
n
a2nNn fn

=

∑
n=2

a2nn2 f 20
∑
n=2

a2nn f0 · n = f0

∑
n=2

a2nn2
∑
n=2

a2nn2
= f0, (23.3)

that is, it predicts the residue pitch heard is f0.
Consider the series 300, 500, 700, . . .Hz. This has a residue pitch

of 100Hz. Pierce6 claims that successive odd harmonics of a missing
fundamental do not produce the residue. Backus7 on the contrary, says
300, 500, 700 will have a pitch of 100Hz, which is just such a case. Fourier
or Partials may be used to to arrive at your own resolution of these
conflicting claims. The autocorrelation has a strong peak at 0.01 second,
corresponding to the residue 100Hz.

Rausch and Plomp have suggested several interesting examples:

• If we take partials at 850, 1050, 1250, 1450, and 1650Hz, all of equal
intensity (it is suggested that you try this in Partials), there is a
strong autocorrelation peak corresponding to 207.90Hz. This is
indeed the perceived residue pitch. Rausch and Plomp report
208.3Hz, and formula 23.1 gives 207.91, insignificantly different.

• Rausch and Plomp have claimed a dominance region in the
frequency range 500 to 2000Hz, suggesting that frequencies in this
range are more dominant in determining the pitch than frequencies
that are lower or higher. As an example, they give the frequencies
204, 408, 612, 800, 1000, and 1200Hz. The first three partials alone
give a pitch of 204Hz. As an example of the dominance idea, Rausch
and Plomp then report that the result of all six partials is 200Hz,
noting that the last three partials alone give this residue, and are
within the dominance region. However, without assuming any kind
of special dominance, the autocorrelation peak formula 23.1 gives
200.62Hz with equal amplitudes for all partials, a near perfect
perceptual match. This actually shows that the dominance idea has
some merit, because higher frequencies, being made up of shorter
wavelengths, make sharper peaks; adding sharp peaks to broader
peaks coming from lower frequencies readily shifts the new
combined peak to be near the sharper peak of the two.

Sounds may have more than one recognizable pitch, as in a musical
chord on a piano or four voices in harmony. However, here we have
to be very careful to acknowledge musical context as part of our ability
to parse separate notes with different pitches from a sound. Recording a
single piano chord and later rather clinically playing a sound bite back to

6John R. Pierce, The Science of Musical Sound, rev. ed., Freeman, New York, 1992, p. 95.
7John Backus, The Acoustical Foundations of Music, 2nd ed., Norton, New York, 1977, p. 130.
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Figure 23.11
D. Deutsch example: 900, 1100, 1300,
1500, and 1700 Hz, run in the MAX patch
Partials. Two autocorrelation peaks,
corresponding to about 216 and 186 Hz,
are revealed.

a listener, out of context, with no attack or finish, could result in a quite
different impression of the sound, compared to listening to the same chord
during a piano recital.

Consider the case 900, 1100, 1300, 1500, and 1700Hz, suggested by
Deutsch. She states that it is ambiguous, either 216.6 or 185.9 based on
pattern matching (one of the theories of pitch that we will not treat)
with a harmonic series. Indeed, the autocorrelation gives healthy peaks
corresponding to both 215.78 and 186.4 (see figure 23.11).

Recent neurophysiological research has shown that the residue pitch is
established in the auditory cortex within 1/10 of a second of the onset of
the sound.

23.14
Seebeck’s Pitch Experiments

A clever experiment by August Seebeck reveals much about autocorrelation
and our built-in pitch algorithms. It is related to the 100 + 200Hz partials of
varying relative strength introduced earlier, but it deals with complex tones
and springs from a physical sound source—a siren. Seebeck’s improved
siren, shown earlier in figure 7.19, had eight rows of holes and 10 adjustable
compressed air tubes that could be placed on different rows and adjusted
so as to cause the holes to be exposed at various phases relative to the other
rows.

Seebeck drilled 60 holes in one circular row, but rather than space them
evenly he offset them slightly in pairs, alternating the angle from one hole
to the next: first 5 degrees, then 7 degrees, then 5 again, and so on. That
is, there were pairs of holes 5 degrees apart separated by slightly larger
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Figure 23.12
(Left) Siren holes spaced 6 degrees apart.
(Right) Siren holes spaced alternately 5
degrees and 7 degrees apart. The period
becomes twice what it was with all the
holes 6 degrees apart.

7-degree gaps between holes on adjacent pairs. If all 60 holes had been
instead each 6 degrees apart—evenly spaced—the result of rotating the disk
five times per second would clearly be a 300Hz complex tone with a 300Hz
pitch. The uneven set of holes corresponds to taking every other hole in the
even set and rotating it by one degree. If the disk is spun again at 5Hz, 300
holes pass by the air source per second, the same number as when the holes
were exactly evenly spaced. It seems that the pitch should again be 300Hz.
Instead, the pitch drops an octave, to 150Hz (figure 23.12).

MAX Siren (see figure 7.18) can be used to reproduce the experiment.
Create two rows of holes, 30 each, with zero phase offset. At five revolutions
per second, a 150Hz pitch is very strong. The holes are sounding in pairs
at exactly the same time, so the periodicity is 150Hz. Now, using the phase
tool, offset one row of holes by 6 degrees (0.016666 × 2π radians; type
0.016666 in the box). This setting causes the second set of 30 holes to sound
exactly halfway between those of the first set, making a 300Hz periodicity
with the disk revolving at 5Hz. The 6-degree offset setting is equivalent to
60 evenly spaced holes in the same row. (We can be sure that the second
row of holes is providing exactly the same pressure profile at each hole as
this first row is, because the sound is being produced electronically. Seebeck
needed to place all the holes in the same row, to ensure that the holes are
all given exactly the same air pressure.)

Up to now, we have established that with zero offset, the pitch is 150Hz,
and with a 6-degree offset, the pitch is 300Hz. What happens in between?
Do we hear both pitches in varying degrees? A 5-degree offset of the second
set of 30 holes (0.013888×2π radians) was Seebeck’s choice. Perfect 300Hz
periodicity happens only at 6 degrees; 5 degrees is not quite periodic at
300Hz and strictly periodic at 150Hz. Even though 300 holes are still
passing by the air source per second, the perceived pitch drops an octave,
to a strong 150Hz with a 5-degree offset.

Since we don’t have to laboriously drill holes, it is tempting to see what
happens as we change the offset from 5 degrees back toward 6 degrees.
To the author, both pitches are apparent at 5.5 (0.015277 × 2π radians)
degrees offset, and the 300Hz pitch becomes perhaps slightly dominant at
5.75 degrees. That is, not until the holes are almost perfectly evenly spaced
does the pitch finally start to switch to the higher frequency.

The data are summarized in figure 23.13, which shows the autocorrela-
tion graphs and the power spectra for 6, 5.75, 5.5. 5.0, and 0 degrees offset
of the second set of 30 holes.
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Figure 23.13
Autocorrelation and spectrum plots for
the Seebeck siren experiment, wherein
exact periodicity of the holes is slightly
broken in favor of pairs. Seebeck used 60
holes, with each hole spaced by 5, 7, 5, 7,
. . . degrees from its neighbor, where 6, 6,
6, 6, . . . would be even spacing of 60 holes.

TheMarquee Effect

These experiments and the data in figure 23.13 give clues as to our built-
in neural algorithms for determining pitch. The first and last cases are
unambiguous, with the first large autocorrelation peaks at 3.333 and 6.666
milliseconds, corresponding to 300 and 150Hz, respectively. The spectra
reflect this periodicity. The middle cases are ambiguous and instructive.
The game being played is to decide which autocorrelation peak determines
pitch. It is possible to have a near tie, in which case we will hear two distinct
pitches. The rules seem to be

Key point: Earlier peaks are favored, taller peaks are favored, sharper
peaks are favored.

There are limitations. For example, peaks may arrive too late to control
our sense of pitch, even if they are tall. These rules can lead to a tie
between an earlier, slightly smaller peak, giving a high-frequency pitch,
and a later, taller peak, giving a lower pitch. It is a little like two stars
who both want top billing on a movie marquee. Someone gets first
billing, don’t they? Not necessarily. Who is first in the marquee shown in
figure 23.14? You may have a definite answer in this case, but not everyone

Starring . . . Mimi Bueno

Mercedes Ford 

Figure 23.14
Who’s got first billing? This is analogous to
one form of the octave ambiguity
problem.
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Figure 23.15
An impossible (in 3D) Penrose staircase.

will agree. The position of the names can be manipulated until they have
equal billing for a given person. All this is in good analogy with pitch—
people will switch over to hearing both pitches as equally important at
different points in the competition between first, sharpest, and tallest. We
dub the “earlier peaks are favored, taller peaks are favored, sharper peaks
are favored” themarquee effect.

The marquee effect model of pitch perception serves as a rough guide
to the pitch(es) we perceive. It is a very useful exercise to set up MAX
Partials with 12 or 15 partials and manipulate them, watching the effect
on the autocorrelation function and listening to the pitch. The pitches
heard are definitely context dependent; you hear different things depending
on whether you leave the sound on while switching partial strengths, and
so on.

23.15
Shepard Tones

One of the most famous auditory demonstrations is called the Shepard-
Risset tones, or Shepard tones, after the inventors. By a very clever choice
of the amplitudes and frequencies of the partials, Shepard tones present a
rising pitch from one semitone to the next. But after 12 rising semitones,
the pitch winds up where it started! This feat is frequently compared to
the impossible Penrose stairs, a 2D drawing of a 3D staircase invented
by the physicist Roger Penrose and his father (figure 23.15). Every step is
up (or every one down in the other direction), and yet one returns to the
starting place. The illusion springs from an ambiguity of a two-dimensional
rendering of what is in reality a three-dimensional object. The Shepard-
Risset tone illusion stems ultimately from a pitch ambiguity, and we shall
analyze it in several ways, as it is quite revealing.

It is not difficult to explain how Shepard tones actually work, yet this
is seldom done. An equal-tempered scale climbs frequency as factors of
21/12 per semitone. Normally, each note would have all the partials above
it as integer multiples of the base frequency. However, Shepard used only
a subset of these, those that are powers of 2, i.e., 2n, n = 0, 1, 2, . . . above
the first partial. The other partials are given no amplitude. The frequencies
used in a complete octave climb up 12 semitones are then

fm,n = 2m/122n f0; m = 0, 1, . . . , 11; n = 0, 1, 2, . . . . (23.4)

If m= 0, the first step in the sequencing of seeming rising pitch, the
frequencies are f0, 2 f0, 4 f0, 8 f0, . . . . Ifm = 12, the tone is back to exactly
where it started; the frequencies are 2 f0, 4 f0, 8 f0, . . . , almost the same;
except missing f0. Here is where the amplitude management comes in: an
envelope is used that modulates the partials according to a fixed function
or shape. The amplitude of a partial depends strictly on the frequency of
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Figure 23.16
The Shepard tones scenario is shown here
as successive upward progression of all
the frequencies with amplitudes
modulated by an envelope function. Only
a few larger intervals are shown for clarity.
After 12 semitones, the original black
partials are exactly replaced; thus the tone
has returned exactly to its former self.
However, each of the semitone steps is an
unmistakable upward change in pitch.

Figure 23.17
A sonogram revealing the structure and plan of the continuously and forever rising
Shepard tone (left) and falling glissade Risset tone pitch illusions. Notice the self-similar-
ity of the sonograms over time; these sound progressions could indeed continue forever
without changing. The vertical lines reveal the fundamental repeated unit of the pattern.
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that partial, according to the envelope, which modulates the amplitudes as
an = E ( fm,n). Specifically, this envelope has the property E ( f0) = 0—that
is, it is 0 at frequency f0. This makes the m = 0 and m = 12 amplitudes
and frequencies the same, so after an octave of semitone steps we have
arrived back where we started, yet every semitone step is a rise in pitch.
Figure 23.16 shows the spectrum and the envelope. We can also see the
scheme in a sonogram (figure 23.17). After one octave rise in pitch, the
pattern of amplitudes and frequencies is exactly where it started, which is
confirmed by the sonogram. The vertical lines in figure 23.17 reveal the
fundamental repeated unit of the pattern.

Shepard Tones and Autocorrelation

The autocorrelation reveals the secrets of the Shepard tones in another way.
The scale and the steps are given in equation 23.4. We pick one of the tones
in the sequence (figure 23.18).

Using the Mathematica CDF player you can download the Shepard
Tones Wolfram Demonstrations Project applet from the wolfram.com
website. This allows you to play the tones in any order you choose. The
12 buttons are arranged in a circular pattern, which is appropriate since the
pattern exactly repeats at 12 intervals.
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Figure 23.18
Autocorrelation of the sound for one stage of the Shepard series. The two arrows show
autocorrelation peaks that could be expected to give pitch sensations. In the next
(nominally higher) tone in the Shepard series, both of these peaks move to the left,
which raises their pitch. This can continue indefinitely, since the innermost peak loses
amplitude as it approaches short times, becoming insignificant. The next peak takes its
place, and peaks farther out that were too distant at first to capture our attention move
left to gradually take the place of the peak that originally controlled the pitch. Even with
this scheme, some notes are qualitatively different from others: some give a stronger
sensation of two pitches; others reveal, with practice, the low frequencies sneaking in to
eventually take the place of higher ones when they approach t = 0.
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Every step clockwise to the next note is an apparent semitone higher in
pitch. There is a left shift of the autocorrelation peaks (which means they
appear earlier in time and correspond to higher pitch), and there are small
changes in their shape and height. The shift is just that required for the
pitch to rise a semitone. When the first two tall peaks are about equal in
height, they are an octave apart and both can be heard. Both tones rise in the
next clockwise step up (both peaks shift left), but the peak closer to t = 0
(higher pitch) starts to diminish in height, graduallymaking the lower pitch
more dominant even though each clockwise step raises the pitch of both
peaks by moving them left. Eventually, new peaks moving from the right to
left arrive, after 12 steps, to exactly reproduce the starting autocorrelation
function.

Can the Shepard effect be achieved without such careful parsing of
partials? The answer is yes, although perhaps not quite so convincingly.
The basic idea is to use many notes across a wide frequency range, with
the highest and lowest notes muted and the loudest notes in the middle of
the range. Play successive rising (or falling) intervals while fading in or out
notes at the extremes. Shepard-like effects have been used by the rock band
Queen in the song “Tie Your Mother Down,” have been exploited by Pink
Floyd, and appear in the works of Bach and Chopin. Risset constructed a
continuous glissade version of Shepard’s discrete tones (figure 23.17, right).
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Figure 23.19
The Shepard tone illusion from the point
of view of the autocorrelation functions,
shown here for the notes of the Shepard
Tones Mathematica applet. The scale is
described in equation 23.4. Every
clockwise step to the next note is a
semitone higher in pitch. Every clockwise
step (1 → 2, 2 → 3, and so on) gives a left
shift of the autocorrelation peaks (which
means that they appear earlier in time and
correspond to higher pitch) and small
changes in their shape and height. The
shift is just that required for the pitch to
rise a semitone. When the first two tall
peaks are about equal in height, they are
an octave apart and both can be heard.
Both tones rise in pitch at the next
clockwise step (both peaks shift left), but
the peak closer to t = 0 (higher pitch)
starts to diminish in height, gradually
making the lower pitch more dominant
even though each clockwise step raises
the pitch of both peaks by moving them
left. Eventually, new peaks moving from
the right to left arrive, after 12 steps, to
exactly reproduce the starting
autocorrelation function.
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Figure 23.20
The same pattern of exactly repeated
intervals of rising frequency seen in the
Shepard tones are seen here in a sonogram
of the Risset rhythm (RissetRhythm).

The evolution of the autocorrelation as the tone progresses through 12
steps “up” is shown in figure 23.19.

As Risset also realized, the general ideas behind Shepard tones can be
applied to rhythm by using several percussionists, bringing in the slowest
beating softly, everyone speeding the beat up from moment to moment,
and fading percussionists out as their beat gets very rapid (figure 23.20).
A percussionist who has been thus eliminated returns to soft slow beating,
and so on. In section 23.22, we suggest that the concept of pitch be extended
well below the nominal 20Hz lower frequency limit of human hearing. In
this light, the Risset beats and Shepard tone phenomena are the same—both
are playing the same game with pitch.

A sonogram of the sound file (RissetRhythm.mp3, on whyyouhear-
whatyouhear.com) reveals the self-similar rising pattern familiar from the
Shepard tones (figure 23.20).

23.16
Chimes: Pitch without a Partial

We return to the perceived pitch, or strike note, of bells and chimes, which
vibrate at many frequencies, just as a plucked string does. The clapper of a
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bell excites many modes at once; a complex vibration of the bell ensues that
is a linear superposition of all these modes, each of which corresponds to
a pure sinusoidal partial. If a mode has an antinode where the clapper hits,
it tends to be strongly excited, and if it has a node there, it will be silent.
This is the same principle as a plucked string, the difference being that the
partials of the bell are not evenly spaced. There is no definite period of the
resulting tone, and no unambiguous frequency that is the inverse of this
period, yet “true” bells have a definite pitch—after all, they have to be able
to ring out a tune.

The perceived pitch of a bell is usually not among the partials present.
To achieve a pleasing tone, the partials cannot be placed helter-skelter. It
is still an art to make a great-sounding church bell. The first, or lowest,
partial tone is called the hum tone and is the simplest ellipsoidal vibration
of the bell, in which the bell oscillates in the same way as the bowl shown
in figure 20.10.

Many people find the unequally spaced partials in a bell or chime easier
to hear out than the equally spaced partials in a periodic tone. We take
as an example the sound file Strike Note of a Chime from the Acoustical
Society of America’s audio demonstration disk.8 In this demonstration,
the same chime tone is repeated nine times. The first time, we hear the
chime; the next seven repeats are preceded by a pure sine tone at successive
(inharmonic) partials contained in the chime tone. Although a trained ear
can certainly hear the individual partials in the original tone with no help,
the tendency on first hearing the chime is to listen holistically, taking in
its pleasing timbre and hearing a definite overall pitch. However, after an
individual partial is played, it is impossible for most people not to hear
that particular partial ringing strongly in the subsequent chime tone, even
though the chime playback is identical to the ones that preceded it. In effect,
we are forced by the playing of the pure partial to hear the subsequent
chime tone analytically. The last repetition of the chime is followed by the
pure sine tone at the pitch of the chime. The pitch does not coincide with
one of the chime’s partials.

The Hosanna Bell in Freiburg

The Hosanna Bell in Freiburg, Germany, was commissioned in 1258.
It is of a design now considered antiquated; its partials are not well
spaced by modern criteria, owing ultimately to its shape. The bell is
“long waisted” and “shaped like a large flowerpot with a heavy rim”
according to William A. Hibbert, whose excellent 2008 PhD thesis (The
Open University, Milton Keynes, United Kingdom) on bells includes a

8Houtsma, Rossing, and Wagenaars.



October 9, 2012 Time: 09:34am chapter23.tex

Chapter 23 Pitch Perception 465

500 1000 1500 2000
Frequency (Hz)

Time (msec)

308 Hz

Po
w

er
Au

to
co

rr
el

at
io

n

t = 1 ∕ 308 s

0.001 0.002 0.003 0.004 0.005 0.006

Figure 23.21
The power spectrum and autocorrelation
for the Hosanna Bell in Freiburg, Germany,
as rung normally by its clapper. There is a
distinct peak in the autocorrelation at
t = 1/308 s, corresponding to a 307.3 Hz
average pitch reported by observers. The
residue pitch formula 23.1 yields 308.6 Hz.

study of the Freiburg Hosanna. The Hosanna has a very definite pitch,
which most people agree is near 308Hz, rather high for a bell of this
size. The partials are at frequencies 135.4, 267.4, 346.4, 365.8, 615.8, 912,
1231.6, 1582, 1962, 2356Hz, with relative amplitudes 0.28, 0.5, 0.82, 0.1,
1.1, 0.85, 0.75, 0.2, 0.3, 0.25. Figure 23.21 shows the power spectrum and
the autocorrelation using just this data. The residue pitch (formula 23.1)
using Nn = (0, 1, 1, 2, 2, 3, 4, 5, 6, 8)—arrived at by counting the nearest
whole number of periods of each partial present—is 308.6Hz.

Pitch of a Kettle Drum

A well-struck kettle drum might have partials at 128, 192, and 256Hz,
which “should” give a residue pitch of 64Hz, since these frequencies are
all multiples of 64Hz. However, almost everyone reports a pitch of 128Hz
instead. The 128Hz component may dominate, but if the next two have a
reasonable amplitude, a constant tone (as opposed to the kettle drumstrike)
with these components does have a pitch of 64Hz (although 128 can also
be heard). The kettle drum, however, stubbornly seems to be 128Hz.
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Figure 23.22
(Left) The autocorrelation function of the sound of a single strike of a kettle drum. Peaks
corresponding to 64 Hz pitch and 128 Hz pitch are competing for dominance according
to the marquee effect principle (see section 23.14). For most listeners, the pitch reported
is 128 Hz. (Right) We synthesized a summary version of the tone, having only 128, 192,
and 256 Hz components. Two sound traces and two corresponding autocorrelations are
displayed. One tone was cut off rapidly, the other, less so. The pitch of the weakly
damped tone when played over a speaker system is indeed often perceived an octave
below the strongly damped one, as Rossing predicted, even though they differ only in
how fast they are cut off. The autocorrelation gives some support to this impression: we
note that for the longer lasting tone, the 64 Hz peak is taller and more prominent relative
to the 128 Hz peak.

Figure 23.22 shows the autocorrelation for a recorded strike of the kettle
drum. We see that the competition for “first billing” on the marquee is set
up (see section 23.14) with an earlier peak at 128Hz and a later but taller
peak at 64Hz. Apparently, here the earlier one wins.

Rossing speculated that the short duration of the kettle drum strike had
something to do with the 128Hz perception. To test this, we create artificial
kettle drum strikes, and check whether the autocorrelation measure of
pitch might lend support to this idea. Using amplitudes (1, 0.6, 0.3), in
that order, for the 128, 192, and 256Hz partials, we listen to the result
for various exponential damping rates. A very interesting trend emerges:
a short cutoff of the sound does cause the dominant pitch to rise an
octave. Moreover, the autocorrelation measure confirms or at least makes
plausible this trend, showing that the peak corresponding to a 64Hz pitch
becomes more prominent relative to the earlier 128Hz peak as the tone
is lengthened. (See figure 23.22, right, and listen to shortkettle.wav and
longkettle.wav, available on whyyouhearwhatyouhear.com.)

23.17
Repetition Pitch

Noise is a common companion out-of-doors. The rustle of leaves, the
sound of a waterfall, waves on a beach, feet shuffling along the ground
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are all noise sources. We now have many additional sources of outdoor
noise, such as jet aircraft, cars passing by, and the general din of cities.
The power spectrum of such noise is often not gathered into many
sharp peaks, but rather diffused over very broad frequency ranges. If
an average is taken over a long time, the power spectrum is a smooth
continuum.

If a complex periodic tone of frequency f and period T = 1/ f is
time delayed by half of its period—a time T/2—and added to its original
self, the pitch of the tone will go up by an octave. The lowest partial,
and in fact every odd (the 3rd, the 5th, and so on) partial above it, is
nullified if it is added to itself half a period later: these partials are always
the negative of themselves half a period of the fundamental earlier. For a
100Hz tone, this is a delay of 0.005 s. If all the odd partials in a 100Hz
tone with 100, 200, 300, 400, . . .Hz partials are killed, leaving 200, 400,
600, . . .Hz, a 200Hz pitch results (an octave higher). This fact figures in
our explanation of Lord Rayliegh’s harmonic echo, wherein he heard an
echo of a woman’s voice return at an octave higher than it left (see section
28.4). The autocorrelation of the signal reveals the repetitions as peaks
and valleys shaping the power spectrum at the receiver accordingly (see
figures 21.3 and 21.4). We discuss commonly encountered examples of this
next.

Huygens at Chantilly

Very likely the first discovery and explanation of repetition pitch was
provided in 1693 by Christian Huygens at the castle of Chantilly in France.
Huygens is renowned for his theories of wave propagation; we encountered
him in connection with refraction (see figure 2.9 and surrounding discus-
sion). He noticed that the sound of a fountain located near a large set of
steps is colored by a dominant pitch, and he correctly surmised that the
reflections of the fountain noise by the nearby steps caused a repetitious
echo consisting of a sequence of small echoes, one from each step. For 1/2
meter separating the steps, the echo from a hand clap near the fountain
would send back echo pulses 340 to the second, giving a frequency of
f = 340. The sound of the fountain is noisy, but the pitch can be heard
nonetheless. The fountain noise can be thought of as thousands of little
claps per second, each of which gets a repetition pitch echo. Huygens’s own
observations are remarkably modern, and his way of explaining the pitch
that is heard is worth reading:

When one is standing between the staircase and the fountain, one
hears from the side of the staircase a resonance that possesses a
certain musical pitch that continues, as long as the fountain spouts.
One did not know where this tone originated from or improbable
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Figure 23.23
The Stairway to Heaven, Temple of
Kukulkan, Chichén Itzá, Mexico. Courtesy
Daniel Schwen, Creative Commons
Attribution—Share Alike 3.0 Unported
license.

explanations were given, which stimulated me to search for a better
one. Soon I found that it originated from the reflection of the noise
from the fountain against the steps of the staircase. Because like every
sound, or rather noise, reiterated in equal small intervals produces a
musical tone, and like the length of an organ pipe determines its own
pitch by its length because the air pulsations arrive regularly within
small time intervals used by the undulations to do the length of the
pipe twice in case it is closed at the end, so I imagined that each,
even the smallest, noise coming from the fountain, being reflected
against the steps of the staircase, must arrive at the ear from each step
as much later as the step is remote, and this by time differences just
equal to those used by the undulations to travel to and fro the width
of one step. Having measured that width equal to 17 inches, I made a
roll of paper that had this length, and I found the same pitch that one
heard at the foot of the staircase.9

Temple of Kukulkan, Chichén Itzá

There is a famous chirp echo at the stairs of the Temple of Kukulkan,
Chichén Itzá, Mexico (figure 23.23). The downward trending chirp can
be seen in the sonogram in figure 23.24. A simulation in Ripple shows in
detail how the chirped echo forms and how it differs depending on the

9Translated by Frans A. Bilsen, Nederlands Akoestisch Genootschap, 178 (2006), 1–8.
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Figure 23.24
Sonogram of a handclap and return echo
at the Stairway to Heaven, Temple of
Kukulkan, Chichén Itzá, Mexico, on the
Yucatan Peninsula, which comes back in
the form of a chirp.



October 9, 2012 Time: 09:34am chapter23.tex

Chapter 23 Pitch Perception 469

Figure 23.25
Ripple simulation of the chirped echo at the
Stairway to Heaven, Temple of Kukulkan,
Chichén Itzá, Mexico. The sound source was
a sudden pulse at the lower left; the circular
pressure wave emanating from the source
can be seen traveling upward above the
stairs, while successive reflections of that
wave off the stairs are returning to the
region of the source.

position of the listener. The running simulation is shown in figure 23.25,
where individual reflections from the stairs are heading back to the source
in the lower left corner.

The geometrical reason for the chirped echo is revealed in figure 23.26.
The pulses returning to the source at the bottom of the stairs have diffracted
off the top edge of each stair. The sound pulses arrive after a round-
trip from source to edge and back. Therefore, the time delay between a
given returning pulse and the next one from the stair above it is twice the
difference in distance divided by the speed of sound. It is seen from the
inset in figure 23.26 that the difference goes from being close to a, the step
width, for sound coming from near the bottom of the stairs, to close to
(a2 + h2)1/2, where h is the rise of each stair, near the top of the stairs. This
increased time delay for pulses arriving later accounts for the lower pitch.

The frequency of the chirp and its evolution with time clearly depend on
the geometry of the stairs and the location of the source and listener. It is
interesting to consider what a listener would hear standing on a platform
10m above the source at the ground. It would be quite different in some
respects!

Ground Reflections

In fact, it takes just one repetition to give the sensation of pitch. You may
have heard this many times without realizing it. Standing on hard ground
or perhaps next to a building, sound can reach you by two different paths
from a source. One is on a straight line through the air, and the other
takes a single bounce before reaching your ears. Whatever you hear on
the first path is quickly repeated on the second, with a delay controlled
by the extra distance the sound travels on the second path and the speed of
sound. Suppose the sound source is essentially white noise—for example, a
jet overhead. White noise is characteristic of air jets and turbulence, and is
an important source of sound, including in speech. (We discussed jet noise
in section 14.7.) The perceived pitch f is given by the reciprocal of the delay
time τ , f = 1/τ . If there is a 0.01 second delay of the bounced sound, a
100Hz pitch can be heard, which, however, is far from being amusical tone.
In fact, one quickly becomes accustomed to the 100Hz coloration, and it
helps to change the sound by moving closer to or farther from the ground,
or bymoving the source itself, changing the delay and the pitch. One way to
demonstrate the presence of repetition pitch is to play a little tune with it.

Figure 23.27 is a sonogram of a sound file that consists of a short segment
of white noise, followed by the same white noise added to a copy with a
10ms delay, and then next with a 20ms delay, followed by a 40ms delay,
and last an 80ms delay. The downward jumps in pitch can easily be heard.

The sonogram in figure 23.27 shows the antiresonance “notches” cut
into the uniform white noise spectrum seen at the left of the figure. For the
sound of a jet passing overhead (found in the sound file Jet Airplane Passing
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Figure 23.26
The geometry of the chirped echo at the
Stairway to Heaven, Chichén Itzá, on the
Yucatan Peninsula in Mexico. Successive
rebounds from the edges of the stairs, at
intervals depending on the distance
increase from one stair to the next. Starting
with a sound source at the left, the
round-trip travel distance to the first stair
edge 1 differs from that to the second stair
edge 2 by an amount very slightly greater
than 2a, or twice the width of the stairs. The
later part of the echo coming from farther
up the stairs, however, has a path length
difference of almost twice the hypotenuse
! = (a2 + h2)1/2, or about 40% greater.
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Figure 23.27
Sonogram of a white noise sample (left
strip), followed by the white noise sample
with a copy added with a 1 ms delay, then
with a 2 ms delay, a 4 ms delay, and finally
an 8 ms delay. The notches (and
enhancements between) in the power
spectrum caused by the repetition are
clearly seen. The reader should verify that
the frequencies of the notches are in the
expected positions.

Overhead available at whyyouhearwhatyouhear.com), the sonogram of
which is shown in figure 23.28, the notches are also clearly visible, but
are now continuously changing with time. Starting at the left, as the jet
approaches, the interval between the notches is decreasing and reaches
a minimum when the jet is directly overhead. After the jet passes, the
interval between the notches increases again. The effect is first a falling
pitch, followed by a rising pitch after the jet passes. This effect is not like the
Doppler effect: after the jet passes, the pitch would continue to fall if this
were a Doppler phenomenon (see figure 7.31 or 7.32). If you look carefully,
the whine of the jet engine is a faint trace in the upper part of the sonogram
that does have this Doppler signature. You can hear the whine of the engine
and the Doppler effect separately from the repetition pitch.

In order to hear these repetition pitch effects, the listener must be
standing on the ground or at least on some hard surface of considerable
extent, like the top of a parking structure. You would not hear the effect
from an apartment balcony.

We can estimate the repetition pitch as the jet passes overhead by
computing the path length difference between the direct and bounce paths
(see figure 23.29). To get both lengths, we need only apply the Pythagorean
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Figure 23.28
Sonogram of a jet passing overhead. The
recording was made with a microphone
placed about 1.8 m above the ground. The
repetition pitch falls to 96 Hz when the jet is
overhead; it is higher both before and after.
The geometry is such that the time delay for
the bounce sound is at a maximum with the
jet overhead. Thus, the frequency of the
perceived repetition pitch is at a minimum.
The Doppler effect is also at work here, seen
in the frequency change of a high-pitched
whine of the engine turbine, which starts
above 3600 Hz as the jet approaches. It
declines to around 2400 Hz as the jet
recedes; this pitch is falling over the entire
time interval, and it falls the fastest as the jet
is overhead. This is in contrast to the
repetition pitch, which rises after the jet
passes.
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Figure 23.29
Geometry of sound reaching a microphone
a distance a above ground by two paths, of
length !1 and !2. The path !2 is longer and,
by bouncing once off the ground, gives rise
to a time-delayed repetition of the sound.
The length of the path !2 can be determin-
ed by extending the path along a line un-
derground reaching a distance a below
ground. The determination of path length
!2 then involves a right triangle and the
Pythagorean theorem, as does the path !1.
The time delay is given by the difference
between the two path lengths divided by
the speed of sound. The repetition pitch
that is heard is the inverse of this time delay.
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theorem, since both lengths are the hypotenuse of right triangles. We have
$1 =

√
L 2 + h2, $2 =

√
L 2 + (h + 2a)2. The lines plotted in figure 23.29

are then

fn(L) = nc
($2 − $1)

; n = 1, 2, . . . , 11, (23.5)

where c is the speed of sound. (A single repetition with a time delay T puts
notches in the power spectrum at frequencies fn = (n− 1/2)/T , as shown
also in figures 21.3 and 23.27.)

Repetition pitch is far more commonly heard than we are normally
aware of. For example, if you are in a room with a ceiling fan that makes
a lot of broadband noise, and there is a hard floor that is very reflective of
sound, try putting your head at different distances above the floor. Youmay
hear a changing pitch. The next time a jet flies overhead, try positioning
your head at different heights above the ground. You’ll have control of the
repetition pitch, which will go up as your head approaches the pavement.

Visually impaired people often use repetition pitch to judge distance.
If you create a sound and there is a wall many meters away, you will
hear a distinct echo separated in time, not a pitch. But as you come
closer to the surface, reflected sound arrives very quickly, say, within a
few milliseconds. The repetition pitch rises as the wall is approached, since
there is a smaller time delay, much too quick to detect a separate echo. If
you become sensitive to repetition pitch, it can be used to judge distance
quite accurately.

23.18
Quantifying Frequency

Frequency can be measured inHz, as accurately and with as many decimal
places as you please, so you might imagine that there’s no need for any
other system. However, the way we actually hear intervenes and makes
another way of measuring frequency much more useful. We are far more
sensitive to small changes of a fewHz at lower frequencies than we are at
higher frequencies. A 5Hz shift in a 50Hz tone is a 10% effect, but a 5Hz
shift in a 5000Hz tone is a 0.1% effect. Most people can tell the difference
easily between 50 and 55Hz, but cannot tell the difference between 5000
and 5005Hz. The best measure of frequency differences would reflect our
sensitivity to them.

Cents

Any octave interval is divided into 1200 parts, called cents. An A3 at 220Hz
and an A4 an octave higher at 440Hz, an absolute difference of 220Hz,
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differ by 1200 cents. The division is, however, not into 1200 intervals of
equal frequency difference, but rather equal intervals in the logarithm of
the frequency. In theWestern, 12-tone, equal-tempered system, this means
there are 100 cents between adjacent keys on the piano keyboard. (We shall
discuss various approaches to temperament in chapter 26.) We can express
the measure of cents as

n(cents) = 1200 log2
(

f2
f1

)
≈ 3896 log10

(
f2
f1

)

= 3896 log10( f2) − 3896 log10( f1), (23.6)

where n is the number of cents up in going from the lower frequency f1 to
the higher frequency f2. Since log2(2) = 1, any two frequencies that differ
by a factor of two are separated by 1200 cents.

Just Noticeable Difference (JND)

The just noticeable difference, or JND, is defined as the minimum pure
tone frequency change required for a listener to detect a change in pitch.
Humans are most sensitive to pitch changes in the range 50 to 2000Hz; in
this range, most of us can detect a change from 2 to 10Hz.10

The JND is about 1/30th of the critical bandwidth throughout the range
20 to 10,000Hz. Thus it is about 3Hz for a 200Hz sine tone, where the
critical bandwidth is about 90Hz, and it is about 70Hz for a 10,000Hz
sine tone, where the critical bandwidth is about 2000Hz. This suggests that
the critical bandwidth is somehow involved in pitch detection. It also is
suggestive of a peak locating algorithm. Suppose a 100Hz signal is smeared
out symmetrically, 25Hz on either side of 100Hz. Even with the smearing,
the maximum is still at exactly 100Hz; if some way exists to find the
maximum response in the curve, then the resolution of frequency will be
much better than ±25Hz. This trick is used to advantage in many fields
where the source of data is known to be sharp, but the instruments smear
it out. The orbital parameters of planets around distant stars are measured
this way, for example. An active neural-hair cell feedback loop is known to
sharpen pitch detection. See section 21.4.

Time or Place?

The controversies and the issues surrounding pitch perception and related
phenomena are intimately connected to two seemingly disparate views of

10To determine your own JND, take the test at http://webphysics.davidson.edu/faculty/dmb/
soundRM/jnd/jnd.html.
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our hearing mechanism: One view puts primary emphasis on place and
partials, meaning the association of location on our basilar membrane
with corresponding sinusoidal frequencies. This view is centered on the
idea of Fourier frequency analysis of sound. The other camp puts primary
emphasis on the ability of our ear and brain system to sort out temporal
information. Clearly, we can decode transient sound, or else we could not
understand speech.

There are many problems with Ohm and Helmholtz’s tendency to
overrate frequency analysis in the context of human hearing. For starters,
consider the beating of two partials close in frequency. If we really detect
separate partials, why should we hear, as we do, the loudness beating of at a
single average frequency rather than the presence of two partials? Transient
sounds are natural to explain in the context of temporal theories of hearing
but very difficult to explain within a place theory context based on partials.
A sentence could be Fourier analyzed in principle; a broad band of power
over a large range frequencies would result. (Try this on your laptop.) But
this is hardly the way we hear.

Most sounds do not arrive in long-lasting tones, ripe for Fourier analy-
sis. We clearly need to have a means of temporal processing. The temporal
school of hearing asserts that we can process separate phenomena that
occur as fast as 5000 times per second. The temporal theories are quite
compatible with the notion, promoted here, that our sense of pitch arises
from periodicity and autocorrelation of sound. This puts pitch perception
up a notch in the auditory system, more neural than mechanical. We are
not waiting for frequency detectors to send the first signals to the brain, but
rather pitch and timbre are deduced from the temporal data.

The two schools of thought, time versus place, are not mutually ex-
clusive. There is evidence that temporal theory applies to most of what
happens below 5000Hz, and place theory above 5000Hz. Our neural
processes cannot keep track of time intervals shorter than about 0.0002
second, or 5000Hz, so it is reasonable that we lose the precision of timing
above that frequency and switch over to a place mechanism for detecting
frequency—the region of maximum excitation of the basilar membrane—
above 5000Hz. People with good hearing perceive frequencies of 20 to
15,000 or 20,000Hz. However, frequency estimation is poor and the sense
of pitch is next to nonexistent above 5000Hz. There is no such thing as
timbre above 5000Hz either. It is doubtful that you can recognize tunes
composed of frequencies entirely above 5000Hz; this is true even of people
with perfect pitch.

It is no coincidence that the grand piano’s highest pitch is 4186Hz
(C8). No familiar musical instrument is played above about 4400Hz.
Complex tones consisting of many frequencies, all above 5000Hz, are
heard analytically as poorly resolved individual frequencies, rather than
holistically as a tone with pitch.
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23.19
Pitch Class, the Octave Ambiguity, and Perfect Pitch

There seems to be no agreement on how many people have perfect pitch,
whether or how it can be learned or acquired, or most significantly even
what it is exactly. At the very least, someone with perfect pitch can tell
you the note being played on a piano with their eyes closed. They may be
able to tell you that the A440 is flat by a quarter of a semitone. There are
studies showing that people who speak Mandarin Chinese from birth are
much more likely to have perfect pitch, the presumed reason being that the
same sounds differing only in pitch have different meanings and training
matters.

Having perfect pitch is like color perception is to most of us: perfectly
natural, done without a thought. It does not seem to be a great accomplish-
ment to match the color of a banana on the color circle. People with perfect
pitch report a G sharp just as matter-of-factly. Indeed, perfect pitch has its
downside. Most people don’t notice if a tune is transposed up a full tone.
This might be as unsavory as a blue banana to someone with perfect pitch.

Perfect pitch does not extend to the point that its possessors can tell
you the pitch is 407Hz, and not 408 or 406Hz. Perhaps more surprisingly,
perfect pitch applies only to pitch classes—that is, the note may be a G3, but
G4 is reported. It makes sense to place color hues in a circle, starting with
red and moving through orange, yellow, green, cyan, blue, magenta, and
back to red, completing the circle with no jumps or discontinuities in hue.
Perfect pitch then corresponds to naming hue, which is to say, the angle
on the color circle. We can imagine colors laid out in a spiral, with each
successive octave lying above the other less color saturated than the last.
All the hues cycle in the same way each octave. Asking someone to name
both the hue and the saturation “octave” is clearly more difficult, and
involves the eye’s color receptors and the brain in a different way. The
pitch spiral (figure 23.30) illustrates the similarity of members of the same
pitch class. The pitch spiral should be applied only to pure sinusoidal tones;
otherwise, many other ambiguities may arise.

Complex tones can suffer much more pitch ambiguity than simple
ones. We have seen how sensitive pitch is to slight systematic deviations
in the Seebeck experiment (section 23.14), dropping the perceived pitch
an octave with tiny shifts in the tone. Because of the partials they share
in common, a complex tone C2, and a tone an octave above it, C3,
have a similarity that is quite striking. In fact, certain complex tones
could be parsed into both a C2 and a C3 note, but this might be up to
the listener; there would be no “correct” answer. All notes separated by
octaves are defined to be in the same pitch class. It is clear, however, that
just as with partials in a complex tone, which can either blend into the
whole or be heard out, voluntarily or not, attention can be called to the
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Figure 23.30
Pitch spiral, showing the similarity (here
schematically seen as color and proximity in
space) of members of the same pitch class,
which are “different” in one way but the
same in another.
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0 f 2f 4f

Figure 23.31
Is this one tone with a pitch f, or is it two,
the black with pitch f and the red with
pitch 2f ?

possible existence of two notes by musical context, learning, and other
cues.

In figure 23.31, we see the spectrum of an ordinary complex periodic
tone, with every other partial colored red, beginning with the second par-
tial. This tone “ought” to have an unambiguous, strong pitch at frequency
f . Yet who is to say that the tone is not a combination of two tones? The
lower tone consists of the black power spectrum, and the upper tone the
red power spectrum. Both tones are complex, one an octave above the
other. A tone like this could be produced with a combination of a clarinet
(lacking its even partials) playing a G3 (black spectrum) and an oboe an
octave above, playing a G4 (red spectrum), with all its overtone partials
present. A clever experiment was described in a Stanford PhD thesis by
S. McAdams.11 The harmonics of an oboe were separated into even and
odd components, and then an independent vibrato was added to just the
odd components. This results in the sensation of two independent notes
on two different instruments, separated in pitch by an octave.

23.20
Parsing and Persistence: Analytic versus Synthetic Hearing

We have mentioned switching between analytic and synthetic listening and
how this can be influenced by context. An example was the chime sound,
analyzed into partials, as heard in the file Strike Note of a Chime from the
Acoustical Society of America’s audio demonstration disk or as heard when
a partial in a complex tone in Fourier or MAX Partials is adjusted, calling
attention to it. Two intriguing questions are raised: Does auditory persis-
tence apply to two or more partials at once? Does this work in a musical
context? These questions were addressed by Helmholtz 150 years ago:

Get a powerful bass voice to sing E flat to the vowel O, in sore (more
like aw in saw than o in so), gently touch B flat on the piano, which
is the 12th or third partial tone of E flat, and let its sound die away
while you are listening to it attentively. The note B-flat on the piano
will appear really not to die away, but to keep on sounding, even when
its string is damped by removing the finger from the digital, because
the ear unconsciously passes from the tone of the piano to the partial
tone of the same pitch produced by the singer, and takes the latter for
continuation of the former. But when the finger is removed from the
key, and the damper has fallen, it is of course impossible that the tone
of the string should have continued sounding.12

11Stanford University, Dept. of Music technical report, STAN-M-22 (1984).
12On the Sensation of Tone. There is a spectacular modern reversal of this experiment, in which

a computer controlled piano with dampers down is able to reproduce recognizable speech. Look
up “Speaking Piano” on YouTube.
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Memory of the partials that were very recently present does seem to
color our perception of a tone. This is why the strike note of a chime or
bell is so important. Some partials die off faster than others, and memory
of them may color what we hear two seconds into a chime tone, making
partials that are very weak have a disproportionate effect.

The boundaries between analytic and synthetic listening are not rigid.
Are we listening analytically or synthetically when we parse a compound
sound into several distinct musical instruments and perhaps many distinct
simultaneous notes? Or, when we recognize two singers in unison as
such, rather than a single voice? (Depending on the voices, the context,
vibrato, and so on, this may be quite difficult to do.) It is one form of
analytic listening to hear out individual partials, but perhaps a not so
distantly related form to hear out patterns of several partials that might
indicate the presence of an oboe, for example, among other instruments
playing simultaneously. According to this definition, normal listening is
part analytical and part synthetic, even when individual partials are not
heard.

23.21
Deutsch’s Octave Illusion

An auditory illusion was discovered by Diana Deutsch in the 1970s and
is rich with implications. It is perhaps the most remarkable audio illusion
yet discovered. (Unless you happen to be one of the few who hears what is
happening correctly.) One of the amazing aspects of this illusion is that
different people hear it in starkly different and easily describable ways.
There are no nagging ambiguities, no mincing of interpretations or words,
which seems to happen too often in pitch perception. This illusion might
be the key to one of the difficulties in resolving pitch in phantom tone
controversies: What if people aren’t hearing even approximately the same
thing?

We quote from Deutsch’s website:

Two tones that are spaced an octave apart are alternated repeatedly
at a rate of four per second. The identical sequence is played over
headphones to both ears simultaneously, except that when the right
ear receives the high tone the left ear receives the low tone, and vice
versa. The tones are sine waves of constant amplitude, and follow
each other without amplitude drops at the transitions. So in fact the
listener is presented with a single, continuous two-tone chord, with
the ear of input for each component switching repeatedly.

Despite its simplicity, this pattern is almost never heard correctly,
and instead produces a number of illusions. Many people hear a sin-
gle tone which switches from ear to ear, while its pitch simultaneously
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shifts back and forth between high and low. So it seems as though
one ear is receiving the pattern ‘high tone—silence—high tone—
silence’ while at the same time the other ear is receiving the pattern
‘silence—low tone—silence—low tone.’ Even more strangely, when
the earphone positions are reversedmany people hear the same thing:
The tone that had appeared in the right ear still appears in the right
ear, and the tone that had appeared in the left ear still appears in the
left ear.13

Now, that’s an illusion!

Pitch and Loudness

There are slight but measurable pitch changes with loudness. Pure tones
of low frequency tend to go down in perceived frequency with increasing
loudness, whereas tones of high frequency tend to rise. The downward shift
maximizes around 150Hz to between 0 and 75 cents when a 250Hz pure
tone is increased from 40 to 90 dB. The largest upward shift happens at
about 8000Hz. There is little or no shift for middle frequencies (1000 to
2000Hz).

For complex tones, the amount of shift and its direction depends on
which partials dominate the tone, but fortunately for music, complex tones
shift much less than pure tones, as if the extra partials help to “anchor”
the pitch. The reason may be contained in the previous paragraph: if low-
and high-frequency partials are reacting in opposite directions, then a
complex tone containing both might not shift at all, on average. It would
be interesting to study partials that are heard out analytically in loud versus
soft sounds: do partials in a complex tone shift as they would if heard in
isolation?

23.22
An Extended Definition of Pitch

A wooden yardstick pressed firmly on a tabletop with a few centimeters
protruding off the edge vibrates at say 60Hz and so has a pitch of
60Hz when “plucked.” Let more of the stick protrude, and the vibration
frequency slows to 10Hz. The large number of harmonics of 10Hz make
the repetitious tapping sound quite audible in spite of the 0.1 s period. We
can almost count the number of periods per second; at 5Hz, we can count
them. The 60Hz frequency has become 10Hz or 5Hz. The sound is still

13See deutsch.ucsd.edu/psychology/pages.php?i=101.
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audible as we slide from 60 to 5Hz. At what point does it stop having a
pitch?

The point is, it doesn’t stop having a pitch. The pitch is 5Hz. Once
digested, this simple example shows that the residue pitch effect is a
necessity, not an illusion. Our hearing must grade from tone into counting
continuously with no abrupt changes. The residue pitch becomes the
counting frequency, which is also necessarily the “pitch.”

According to this definition, humans can hear the pitch of sounds
for 0Hz to about 5000Hz, above which we lose a precise sense of
pitch. This point of view highlights the difference between pitch and
partials, which cannot be heard below about 20Hz but can be heard
(although not precisely in terms of estimating the frequency) above
5000Hz.

This definition of pitch overlaps and extends the traditional use of the
word in a musical context. It is consistent with the use of pitch in other
contexts: the pitch of a screw, or the pitch of seating in an airliner. Pitch is
always about the number of objects in a given space, or in music, time.

We illustrate this principle with the sound file 10HzMissingFund.wav
(available at whyyouhearwhatyouhear.com), which is a summation of 25
harmonic (equally spaced) partials starting at 20Hz—20, 30, 40, . . .Hz.
Even better, set up MAX Partials with the fundamental and a few more
lowest partials absent. Slide the base frequency to 10Hz, and slide the
mouse pointer over the higher partials to create a lump, or formant, of
amplitudes. You should hear 10Hz pulsing. Next, slowly raise the base
frequency. Separate pulses that sound rather like helicopter blades idling
at 10Hz will become a continuous beat tone, with a pitch equal to the pitch
of the residue. This process may not be complete until 100Hz or above. The
transition is smooth, however; nothing abrupt happens in the range 10Hz
to 100Hz. Our hearing system grades continuously from the “counting”
regime at 10Hz and below to the regime of a tone well above 50Hz.
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Timbre

Timbre is the third of three executive summaries of sound provided to our
consciousness, after pitch and loudness. Timbre is what is different about
a trumpet and a clarinet when they (separately) play a 220Hz tone at the
same loudness. Like all sensory functions, timbre is a complex, difficult to
measure, psychophysical phenomenon. As with the sense of taste, there are
subtleties and there are also connoisseurs. Impressions of timbre depend
on context and experience. We shall try to sidestep these nuances and take
a simplistic view: timbre is a kind of executive summary of the distribution
of amplitudes of the various partials in a complex tone. Two sounds having
all the same frequencies present but differing in amplitude have a different
timbre. It is easy to experiment with timbre differences by changing the
power spectrum amplitudes in Fourier or MAX Partials.

It is not possible to characterize timbre on a single scale from low to high,
as we can for pitch and loudness. Timbre depends on the relative amplitude
of the various partials, but it is often hard to describe. Some universals do
exist: tones consisting only of the odd harmonics sound “hollow.”1 Tones
with many high upper partials may sound raspy or harsh, as in buzzing into
a trumpet mouthpiece; those with few may sound mellow, as in a flute at
low sound volume. Pure sinusoidal partials are dull and colorless, especially
at low frequency.

24.1
Timbre and Phase

Shape Depends on Phase

When two sinusoids of frequency f1 and f2 are added together, the shape
of the resulting curve depends on the relative phase φ:

y(t) = A1 sin(2π f1t) + A2 sin(2π f2t + φ). (24.1)

1For good reason: half-open pipes (that is, a hollow space) have only odd harmonics as
resonances!

480
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Figure 24.1
Both of the black traces are the result of
adding the colored sinusoids together.
These are the same in the two cases,
except for a phase shift. Both black traces
would sound almost exactly the same, and
both have the same power spectrum.

The phase controls the offset of the crests and troughs of different
partials, and affects the resulting shape when they are added together
(figure 24.1).

Ohm-Helmholtz Phase Law

We can phase-shift a sine wave by adding a phase φ inside the argument of
the sine—that is, y(t) = A sin(2π f t + φ). We allegedly cannot hear one
φ from another. In a complex tone, there may be many partials and many
possible phases φi , which for a harmonic tone reads

y(t)= A1 sin(2π f t+ φ1)+A2 sin(4π f t+ φ2)+A3 sin(6π f t+ φ3)+· · · .

(24.2)

Now the question arises: can we hear differences as the φi are changed?
There is a generalization of this question to any steady inharmonic tone
like a chime. Here, we will consider mainly pairs of sinusoids that fall into
both harmonic and inharmonic classes.

The autocorrelation (and thus the power spectrum) of a steady tone
is unchanged by the phase of its partials, so it is no surprise that pitch
is not affected by the phases. However, since the phases drastically affect
the shape of the waveform, one might wonder if the timbre is affected.
Although Ohm knew that the timbre of a note is a result of the amplitudes
Ai , he assigned no importance to the phases φi . Later, Helmholtz made this
an explicit principle, asserting that phases did not affect our perception
of the tone. We shall call this the Ohm-Helmholtz phase law, which is a
corollary of Ohm’s law, since phases are not mentioned in the statement of
Ohm’s law.

Figure 24.2 shows a case with many partials; when the phases are
randomized the waveform changes drastically. According to the Ohm-
Helmholtz phase law, we can’t hear the difference.

Are we in fact totally insensitive to the phases? Elaborate and ingenious
experiments were devised to check this, in particular by Helmholtz and
Rudolph Koenig. These experiments were not taken to be conclusive,
because it could not be verified that other things besides phase had not
changed. Now, we can check this more easily with computers, although
some of the same pitfalls still exist. Primarily, it is important to ensure
that there are no partials shared by tones that are to be phase-shifted.
If in fact some are shared, then phase shifting will alter the amplitude
of the shared partial, since the relative phase will induce constructive or
destructive interference.
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Figure 24.2
The two 100 Hz traces shown here have the
same power spectrum. They differ in the
phase choices, φk, in equation 24.2 in the 15
partials that are present. When played, they
sound the same or nearly the same, suppor-
ting the Ohm-Helmholtz phase law. How-
ever, if you play them back at 1/4 speed
(25 Hz), they sound significantly different.
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Rationale for Insensitivity to Relative Phase of Harmonic Partials

There is more than one rationale for our phase insensitivity to harmonic
partials in a tone. Even in musical sounds, relative phases of the partials
can vary naturally over time. Real strings are an example, where the higher
harmonics are not quite exact multiples of the fundamental—for example,
the second partial of a string might be 401Hz if the first partial is 200Hz.
The fact that the second partial is one Hz away from being perfectly
harmonic means that the relative phase of the second partial is going full
circle through 2π once per second:

sin(2π200t) + sin(2π401t) = sin(2π200t) + sin(2π400t + φ(t)), (24.3)

where the phase φ(t) = 2π t. If we were quite sensitive to phase, the piano
would sound very weird indeed. Certainly, however, the timbre of a piano is
not perfectly constant after a note is struck with the pedal down. Some of its
shimmering qualities may be due to slight changes of timbre due to phase
drifts, although interaction of string and soundboard is also important.

The second rationale for our insensitivity to phase is that we need to hear
more or less the same thing when in similar locations, as in two different
seats in a concert hall. Two listeners sitting in different places relative to
the sound sources can experience a marked shift in the relative phase of the
partials they are hearing. However, they also experience different strength
of the partials, due to reflections from walls and the ceiling that enhance
certain frequencies at the expense of others, which we saw in connection
with the repetition pitch effect (see section 23.17 and figure 27.17).

To simplify things, we go outdoors to eliminate most reflections. Sup-
pose one singer is producing a pure partial at 100Hz, and another several
meters away is generating a pure partial a fifth above, at 150Hz. Two
listeners at different locations receive the partials with altered phases since
the time delays are different. (The phase shift due to a difference d is
distance is 2πd/λ, where λ is the wavelength of the partial in question.)
Figure 24.3 shows a numerical simulation of this situation, done in Ripple,
resulting in a very different-looking sound trace for the two listeners.
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Figure 24.3
The sound waves emanating from two
“singers,” each singing a different purely
sinusoidal tone (one at 100 Hz, and
another at 150 Hz), are shown reaching
two “listeners" some distance away.
Because the listeners have different
distances to the two singers, they
experience a different relative phase of
the 100 Hz and 150 Hz sine waves. The
listeners receive different sound traces,
but with very nearly the same power
spectrum. The Ohm-Helmholtz law says
that the listeners will hear essentially the
same timbre.

Nonetheless, we expect them to hear essentially the same tone and timbre.
We come to the conclusion that acute sensitivity to the relative phase of
partials would not be a good thing. We would not want the two traces in
figure 24.2 or 24.3 to sound as different as they look.

24.2
Amplitude and Timbre Beats

The simplest form of beats are heard as undulations of amplitude (loud-
ness) occurring between two sinusoidal partials if they differ by less than
about 10Hz. As the difference increases, the sensation of beats eventually
gives way to a “fused” tone, which sounds “rough” when the frequency
difference goes above 15Hz. If we increase the frequency difference further,
the fused tone remains rough but becomes discernible as two separate
tones. Still further, the rough sensation finally becomes smooth. This
happens when the two tones “get out of each other’s way” on the basilar
membrane: each pure tone affects a nonoverlapping critical band. (See sec-
tion 26.1 for more details about these effects, which figure strongly in our
sense of dissonance and therefore our choices of musical temperament.)

Two sinusoids combined, f (t) = sin(2π f1t) + sin(2π f2t), can also be
written as

y(t)= sin(2π f1t)+ sin(2π f2t)=2 cos[2π( f1− f2)t/2] sin[2π( f1+ f2)t/2]

= 2 cos[2π$ f t/2] sin[2π f̄ t], (24.4)

using the identity sin v + sin u = 2 cos 1
2 (v − u) sin 1

2 (v + u). The two
sinusoids may be written as a product of two new sinusoids, one with the
average frequency f̄ = ( f1+ f2)/2 and one with half the difference frequency
$ f/2 = ( f1 − f2)/2.

The reader is encouraged to add two sinusoids differing by a few Hz to
hear the beats. They are also quite visible on a plot (see figure 24.4). All this
seems straightforward, but, in fact, subtleties abound when two sinusoids
are added, especially when it comes to what we hear and what we don’t
hear.

The case of adding 27Hz and 25Hz sinusoids is shown in figure 24.4.
The GCD of these two frequencies is 1Hz, and this is indeed the true

Figure 24.4
A 27 Hz sinusoid and a 25 Hz sinusoid are
added, and show beating at 2 Hz, but
periodicity at 1 Hz.

1 sec
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periodicity of the tone. However, we expect to hear a 2Hz beating, since
the partials differ by 2Hz, and we do. In fact, there are two loudness
maxima per second, but as close inspection of figure 24.4 reveals, adjacent
maxima are very slightly different. We can’t hear that slight difference;
rather, we hear the maxima. Mathematically, this happens because the
cosine oscillates at half the difference in frequency, or 1 Hz. However, there
are loudness maxima at 2 Hz, because they happen whether cosine is near
1 or −1.

Generalizing the Concept of Beats

There are two ways to extend the notion of beats. One is to keep the
percentage change in frequency small between the two sinusoids but raise
the base frequency so high that the beats repeat with a frequency in the
audio range. An example: add 3000Hz and 3080Hz sinusoids; the 80Hz
beatingmay produce an 80Hz “phantom” beat tone that has no basis in any
partials that are present. We take up the topic of beat tones in chapter 25.

Another extension of the idea of beating is to use sinusoids that differ
slightly not from each other, but rather ones that differ slightly from a
musical interval such as an octave or a fifth. Like the string with its naturally
mistuned harmonics, this may give rise to periodic oscillations of timbre—
timbre beating—with the beating slow enough to count. The changes
in timbre are usually small, as befits the reasons for phase insensitivity
mentioned above.

24.3
Waveform Beats and the Phase Law

We have already seen a type of waveform beat in figure 24.4: a slow cycling
of the shape and size of the individual oscillations. The two frequencies
25:27 were quite close, so we call this 1:1 beating. The waveform oscillations
are evident in figure 24.4 as undulations of the envelope; these undulations
are also plain to hear.

Here, we discuss a more subtle form of beating, wherein the two partials
are quite different in frequency, but may be approximately related by
frequency intervals like 1:2, 2:3, 4:5, and so on. The waveform of the
addition of two sinusoids related by an octave, a perfect fifth (3:2), a perfect
fourth (4:3), and so on depends on the relative phase of the two partials.
According to the Ohm-Helmholtz phase law, we are insensitive to this
phase.

A closely mistuned partial, say, off by 0.25Hz, as in 100.25 and 200Hz,
can be considered to be a perfectly tuned partial with its phase drifting by
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2π once every 4 seconds (see equation 24.3). Such a slow drift would allow
the listener to establish the timbre at all times, and if the timbre depends
slightly on the relative phase, the timbre should cycle through a change
once per 4 seconds. This would be interpreted as a sensation of slow,
weak beating, not so dramatic as loudness beating. In fact, beats are heard
going through a complete cycle once every 2 seconds—see the following.
This phenomenon has generated lengthy discussions as to its cause and a
prodigious amount of experimentation. A plot of the waveform over some
interval (say, 10 seconds) reveals that it cycles through “shapes” at the same
frequency as the beats that are heard. This phenomenon has earned the
names waveform beats, beats of mistuned consonances, and quality beats.
For example, 201Hz added to a 400Hz partial beats at 2Hz; a 200Hz
plus a 401Hz partial beat at 1Hz. The reader should try this, using, for
example, MAX Partials. The beating is subtle but definitely present, even at
low volume. The beating may be more pronounced if the upper partial is
less loud than the lower one.

We notice that both 201 + 400Hz and 200 + 401Hz differ from
perfection by 1Hz, but the waveform beating is different. The waveform
shape is the way two sinusoids of different period are combining: Are
crests adding with crests, and the like? A key point is that a given crest
in a plot of sin(ax + b) shifts at a rate inversely proportional to a as b
changes: $xc/$b = −1/a, where xc is the position of a crest. So, for
example, as the phase b = 2π$ f t advances in the term sin(2π f t+ 2π t)—
($ f = 1)—it advances the sinusoidal peaks in proportion to 1/ f . This is
why 200 + 401Hz has waveform beats half as often as 201 + 400Hz.

Some waveform beats are seen in figure 24.5. Although all four examples
are strictly periodic at exactly 1Hz, they regain shape at different frequen-
cies, 1Hz for 100+201, 2Hz for 101+200, 2Hz for 200+301, and last 3Hz
for 201 + 300. The beating we hear makes perfect sense if we are slightly
sensitive to the waveform.

We don’t need to use whole numbers. For example, beating at
2.5342. . . Hz is heard for the combination 101.2671 . . .+200Hz. The actual
waveform may never exactly repeat, but the waveform shape beats repeat
reliably at 2.5342. . . Hz.

Figure 24.6 shows some detail in a 1-second trace of the waveform
sin(2π · 200t) + sin(2π · 301t); the shape changes in the waveform are
clear. In spite of near-coincidences, the exact function (as opposed to its
overall shape) does not repeat in less than 1 second. The two red traces
differ in time by 1/2 second and have the same shape, although they are not
quite identical in detail. The red and black traces at the bottom are the same
shape except they are each other’s negative (one is upside-down compared
to the other). They are only a quarter-second apart. If they sounded the
same, the beating would be 4Hz, but instead it is 2Hz. Thus a waveform
and its negative generally do not sound exactly the same, even though they
differ only by an overall sign. The relative phases of the partials are the
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Figure 24.5
One-second sound traces showing
waveform beating at various frequencies for
combinations of pairs of partials that are all
strictly periodic with a period of 1 Hz. We
hear mild beating at the frequency of the
waveform repetition. (Upper left) Beats
repeat once per second. (Upper right) Beats
repeat twice per second. (Lower left) Beats
repeat twice per second. (Lower right) Beats
repeat three times per second. The sound
trace repeats only once per second in each
case, despite appearances.

100 Hz + 201 Hz 101 Hz + 200 Hz

200 Hz + 301 Hz 201 Hz + 300 Hz

same whether or not the signal is inverted; so now we know that even an
overall phase (of π or 180 degrees) of the whole waveform can change
the timbre. Apparently, we can hear the sign of a waveform, which is
easy enough to check, assuming one’s sound reproduction equipment is
responding linearly. The author finds noticeable differences between the
sound of waveforms 1 and 2 of figure 24.7.

Figure 24.6
A 1-second trace of the waveform
sin(2π · 200t)+ sin(2π · 301t); insets show
details of the waveform at the times
indicated. The waveform “shape”
undergoes two complete cycles in one
second—that is, a 2 Hz waveform beating.
The two red boxes and associated
waveforms differ by 1/2 s. The exact period
is 1 s, so although they are the same shape,
they are not quite identical, despite
appearances. For the purposes of waveform
beating, they sound identical.
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Figure 24.7
The two waveforms 1 and 2 differ only in
an overall sign. However, they sound
somewhat different—they have a slightly
different timbre.

Suppose a waveform is periodic but not symmetrical in time—that is, it
looks different if reversed (played backward), which corresponds to setting
t to −t in the Fourier series. Both original and reversed waveforms have
the same spectral content and differ only in phases:

a1 cos(2π f t + φ1) + a2 cos(4π f t + φ2) + · · ·

→ a1 cos(−2π f t + φ1) + a2 cos(−4π f t + φ2) + · · · (reversed)

= a1 cos(2π f t − φ1) + a2 cos(4π f t − φ2) + · · · , (24.5)

since cos(x) = cos(−x). Depending on the waveform, the sound and the
reversed sound are also slightly different in timbre.

24.4
The Perception of Waveform Beats

The waveform beating debate began with Johann Scheibler (1777–1837), a
silk merchant in Crefeld, Germany, who did some early experiments with
tuning forks in the 1830s. In 1881, one of the eminent acoustical researchers
of that time, R.H.M. Bosanquet, in an article in the Journal of the Royal
Musical Association titled “On the Beats of Mistuned Consonances” said of
his quest to find the source of the beating:

It is hard to believe that a question to which the answer is tolerably
simple could be so difficult. Yet it is very difficult; it is one of the most
difficult things I ever tried to do.

Arguments and experiments continued with Ohm, Koenig, Helmholtz, and
many others. If humans cannot hear the phases at all (which, we have
already seen, is not the case), then some other explanation of waveform
beating is needed. The 2Hz beating sensation for the combination 101 +
200Hz is consistent with a nonlinear aural harmonic of 2 × 101 = 202Hz
generated by the ear itself, beating in the 1:1 way at 2Hz with the “real”
200Hz partial. The plot thickens, however, when we try to explain the
3Hz beats heard when 201Hz and 300Hz partials are present. The third
harmonic of 201 and the second of 300 are 3Hz apart and could cause
3Hz beats, but this is starting to feel like a nonlinear conspiracy theory.
Remarkably, the beating is heard even if one partial is fed to the right ear
and the other to the left. This eliminates some types of physical nonlinear
effects as responsible for the beating.

The waveform for adding 200 and 301Hz sinusoids is cycling twice per
second (see figure 24.5); 2Hz beating is heard. By very clever masking
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experiments, Plomp2 showed convincingly that nonlinear distortion is not
the cause of the 2Hz beating. According to Helmholtz’s nonlinear ideas, a
2Hz beating could be, for example, between a 99Hz nonlinear distortion
product 2 × 200 − 301 = 99 with a 101Hz distortion product 301 −
200 = 101. Plomp masked the region around 100Hz with noise, which
failed to kill the beating, strongly arguing for waveform beating as the
mechanism.

Life gets a lot simpler if we merely acknowledge that the Ohm-
Helmholtz phase law is only approximately true. This law is not funda-
mental physics but an observation about human perception, a perceptual
trait we just decided is an advantage (see figure 24.3). Suppose that
the sensitivity to phase is merely weak instead of nonexistent, growing
weaker still at high frequencies (above about 1500Hz). At low frequen-
cies, some sensitivity to phase can be assigned to the need for tempo-
ral resolution of events. Since it is not pitch that changes in waveform
beating, nor loudness, we must assign the beating to periodic changes
in timbre. We conclude that timbre can be slightly sensitive to phase.
The question then becomes, how is it that we are slightly sensitive to
phase? We must somehow be sensitive to the shape of the arriving
waveform.

To summarize, if we humans detect exactly the frequencies that are
present and no more (strict place theory), there should be no waveform
beats. Timing theory suggests that we might be able to hear differences in
the waveform even if the power spectrum is the same. As the relative phase
of the partials (and nothing else) changes, the waveform changes, possibly
drastically. If beats are heard, we can hear the shape of the waveform,
contradicting the Ohm-Helmholtz phase law.

24.5
ADramatic Phase Sensitivity

A pitched pulse waveform created in the MAX patch Partials highlights
phase sensitivity and the limitations of the Ohm-Helmholtz phase law,
as seen in figure 24.8. Pitched pulses can be created by giving amplitude
to a group of partials peaked at frequency near f peak , well above the
lowest partial (base frequency) f0. The pitch of the pulses is centered
at f peak , but the pulses repeat with the base frequency f0. The pulses
require a particular phasing of the partials, as is made clear next. Three
versions were created, one with phases all the same (which create the

2R. Plomp, “Beats of Mistuned Consonances,” Journal of the Acoustical Society of America v. 42
(1967), 462.
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Figure 24.8
Experiment in MAX Partials showing an
example of extreme sensitivity to relative
phases of the partials, in contradiction to
the Ohm-Helmholtz law. The auto-
correlation function is independent of the
phases and is a sequence of pitched
pulses. The waveform, however, is very
dependent on the phases. When they are
randomized (middle example), a dis-
organized waveform results. When only
one partial is phase-shifted, the delicate
phasing to make the pulses is upset and
the corresponding sinusoid stands out,
not only on the waveform but also to the
ear, marking a large phase sensitivity. The
random phase case also sounds quite
different, if the fundamental frequency is
below a few hundred Hz. Above that, the
differences between the different
phasings start to diminish.

Power spectrum Autocorrelation

WaveformPhases

0

2p

Frequency10f0

fpeak

f0

pitched pulses), one with random phases (which gives a disorganized
waveform but the same autocorrelation), and the last with only one
phase altered (the rest again the same), which again gives pitched pulses,
except a sinusoid belonging to the altered phase partial (the partial with
the phase shift) stands out at all times. The sound changes radically
according to the relative phases of the partials, for any base frequency
f0, from 5Hz to hundreds of Hz. Clearly, the Ohm-Helmholtz law fails
miserably—the sound changes a great deal with phase changes in this
example.

24.6
Timbre and Context

A bell struck in the normal way can have a luscious timbre. Yet, if the
continuous bell tone is recorded, and then played back with an abrupt
beginning, or perhaps a smooth onset, it sounds very clinical.3 The same
can be said for many instruments deprived of their normal attack.

3Listen to BellSegment.wav on whyyouhearwhatyouhear.com.
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Box 24.1
Helmholtz’s and Koenig’s Ingenious Tests of the Ohm-Helmholtz Phase Law

Ever the resourceful experimentalist,
Rudolf Koenig set out to test sensi-
tivity to the phase of the partials in
periodic tones. It might seem suffi-
cient just to rotate different sets of
holes in a siren relative to each other
to change the phase, but this also
affects the amplitude, not just the
phase, of any partials shared by the
two tones. For example, a circle of 20
holes and a circle of 30 holes create a
200Hz and a 300Hz tone if the disk
rotates at 10 revolutions per second.
The two tones, which are a perfect
fifth apart, both have amplitude in a
600Hz partial. If both partials had the
same amplitude and phase, the
amplitude of the sum would be twice
that of each of its components. But a
180-degree phase change of one of
them would change the sign, cancel-
ing the amplitude of the 600Hz
partial. Since a change of phase of one
of the notes changes the amplitude of
the 600Hz partial, the timbre will
change, since it depends on the
relative intensity of the partials.
Helmholtz’s circumvention of this

problem led him to invent the double
siren (figure 24.9). This ingenious
device consisted of two independent
sirens strongly coupled to tunable
Helmholtz resonators. The reso-
nators were supposed to filter out all
the harmonics of the siren but one
each, selected by adjusting the air

volume of the brass chamber. The
relative phase was adjustable by
changing the timing of the puffs of
air. The two siren disks rotated on a
common shaft, guaranteeing that the
frequencies produced by the two
sirens would be locked into simple
integer ratios depending only on the
number of holes being played in a
given disk. The objection to this setup
is that the filtering would not have
been perfect, and weak harmonics
could reinforce and cancel as desc-
ribed earlier, causing unintended
subtle alterations in timbre and
loudness.

Realizing this, Koenig invented his
wavetable synthesismethod, or wave
siren. A slit of air emerging from a
pressure source strikes a proximate
rotating metal band of variable
height. The air escapes in proportion
to the height of the unobstructed
portion of the slit (figure 24.10). The
shape of the bands were painstakingly
computed and cut, using a photo-
graphic process to reduce a large
mockup of the curve to the right
size for the template. However,
the vagaries of real airflow around
such obstacles may have caused far
more deviation from a pure phase
effect than any error in the curves.

He used this apparatus to success-
fully investigate phantom beat tones,
discussed later, but it was not clear

that the method of blowing air across
cut metal bands as in figure 24.10
produces tones with partials exactly
of the same amplitude from one set of
phases to the next.
These difficulties led Koenig to

construct a real masterpiece, in which
he simplified the waves to a sinus-
oidal shape, and returned to rotating

Figure 24.9
Helmholtz’s double siren (constructed
by Koenig), invented to test senistivity of
our hearing to the relative phase of the
partials. Each siren drives its own
Helmholtz resonator, with a controllable
phase.

Perhaps the most dramatic demonstration of context on timbre is
to play a note backwards. A piano works especially well. As Mur-
ray Campbell and Clive Greated state in their book, The Musician’s
Guide to Acoustics, if a piano is played backward the “instrument is
transformed into a leaky old harmonium, although only the order
of presentation of the sound has changed.” Indeed, the timbre as
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Figure 24.10
The wavetable synthesis apparatus. In this innovative variation on a
disk with holes in it, Koenig achieved something close to arbitrary
waveform generation, with metal bands cut to the shapes of different
waveforms. Using a slit source of air, he could get the pressure varia-
tions at the generator to mimic the waveform. In one set of experi-
ments, he used bands that differed only in the relative phases of their
partials. By this mechanism, Koenig heard significant differences
between different phasing of the periodic waveforms produced by
this apparatus. However, given the complexities of the airflow past
the metal bands, it is not clear that the test is purely a difference of
phase, as his critics pointed out at the time. Another set of bands (the
one shown) consisted of the superposition of two Fourier compo-
nents or partials, which he used to demonstrate beat tones. The
bottom band reveals a clear beat pattern from adding two sinusoids
of nearby frequency. There is a standard disk siren mounted horiz-
ontally at the top for producing various siren tones for comparison.

disks (15 of them), each with double
the number of sinusoidal oscillations
as the one before, so that he had total
amplitude and phase control of 15
harmonic partials, an amazing feat
for its day (figure 24.11). Still, Koenig
could not be sure that the disks
produced only a pure sinusoid.

Sinusoidal teeth

Phase adjustment
slots

Figure 24.11
This 15-disk wave siren provided complete amplitude control (by
varying the air pressure in individual tubes) and phase control (by
adjusting the position of the air tubes) of sound.

defined by the power spectrum has not changed, but the perceived
timbre goes from a lovely grand piano to something rather unpleasant.4

4Listen to GrandPiano.wav, on whyyouhearwhatyouhear.com.
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Sound that ramps up and suddenly ends can be turned into pulses
that start abruptly and decay slowly, just by reversing them. This
does not affect their spectral content, but they leave a very different
impression. This is an easy experiment to try on your computer.

24.2
Timbre, Loudness, and ShockWaves

Universally, when wind instruments (including the voice) are driven
harder, the strength of the higher harmonics grow relative to the lower
harmonics. The sound becomes more brilliant, or perhaps develops
too many high harmonics and begins to sound raspy, according to
the effects of autodissonance and overlap of harmonics on the basilar
membrane. The vocal folds, for example, suffer more violent and
abrupt opening and closings when driven at higher pressures, which
necessarily generates stronger high harmonics.

An interesting phenomenon happens with both the trombone and
the trumpet, and possibly other wind instruments: the oscillating air
column vibrations arrange themselves into a shock wave under very
loud driving of the instrument; this has been captured using schlieren
photography. The shock wave certainly requires the presence of high
harmonics. Perhaps most surprising, however, is that a sharp shock
front implies a precise phasing of the harmonics of the air column, in
analogy to the Helmholtz wave on a violin string.

How indeed are the relative phases of the harmonics determined
under any playing conditions? Certainly they are not random, since the
vocal folds (or lips, in the case of a trumpet, for example) are open
in pulses, and the pressure due to a given partial should be high in
the mouthpiece at the moment of the pulse to resonantly enhance that
partial. This suggests a more pulsed waveform than a random choice
of phases is likely to produce. It appears that further investigation of
the relative phases in wind instruments, as a function of the player,
instrument, lipping up or down, and so on would be very rewarding.
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Phantom Tones
Reality is merely an illusion, although a very persistent one.

—Albert Einstein

In this chapter, we discuss perceptions of tones that simply are physically
not present in the sound arriving at out ears. Certainly, we see things that
aren’t there, and many good visual illusions are widely known. Auditory
illusions are much less well known, but we try to partially remedy that
here.

25.1
Lies and Illusions

Illusions are of two types: (1) those with a direct purpose, which we like
to call “lying in order to tell the truth,” and (2) just plain weird and
“unexpected” side effects of our sensory apparatus and algorithms.

An example of the first type from the visual world is two squares on an
image of a chessboard that look like they are very different shades of gray
(A and B in figure 25.1), when they are in fact physically the same shade
of gray on the printed page.1 This example falls under “lying to tell the
truth,” since it is very likely that the chessboard would have been uniform
under uniform illumination, and our brains know that the shadow of the
cylinder should cause only an apparent, not a real darkening of the shaded
region. This is how the image is presented to our consciousness, which is a
lie because the areas that appear to be much darker in shade are not.

A very clear audio illusion with a definite purpose involves estimating
the direction of a sound source. A sudden pulse of sound from the right will
arrive at the right ear first. We use such arrival time delays to help decode

1The image is also found on whyyouhearwhayyouhear.com. Copy it to your screen and
experiment with it—for example, cut and paste the two regions in question onto a blank field.

Figure 25.1
A visual example of our sensory system and
the brain lying to us in order to tell the
truth. The two squares of the chessboard,
labeled A and B, are of exactly equal gray
value. Courtesy Edward Adelson, MIT.

493
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Figure 25.2
The sound field near a model head at three different frequencies, 220 Hz (left), 600 Hz
(middle), and 1400 Hz (right). The incident sound is a plane wave coming from above.
Note that the sound intensity is about the same on the side of the head facing the source
as it is on the side facing away at 220 and 600 Hz, but it starts to diminish on the far side
as the wavelength approaches the size of the head. So, for low to midrange frequencies,
the sound is nearly equally loud on either side of the head, but there is a crucial time
delay, so that both ears are not receiving the same signal at the same time. The
impression that the sound is much louder in one ear than the other is a necessary
illusion, designed to quickly reveal the direction of the source of the sound.

where the source is, as mentioned in section 21.2. A click from the right side
of the head is heard only in the right ear, yet the sound is almost exactly
as loud in the left ear after it has diffracted around the head! Our brain
suppresses the sound on the left, which is a lie with a purpose: to convey,
without delay, the impression that the source of sound is to the right. How
else would this information be presented to us so that the conclusion is
instantaneously obvious?

The diffraction of sound around small objects can be simulated in
Ripple. Draw a mock head receiving sound from one side, as shown in
figure 25.2; make sure that the Fixed Edges option is unchecked. With two
probes and a source, show to your satisfaction that (1) the sound is almost
as loud at the “far” ear if the wavelength is long enough, and (2) the phase
of the arriving sound differs compared to the “near” ear.

This illusion is easy to quantify using earbuds and sound generation
software. Use your laptop to generate or record a sharp click in monaural
sound. Copy it over to a second stereo channel, and then time-delay the
playback in the right ear by various amounts. You can do this by using
the Generate Silence option in one channel after copying the click over.
Using earphones, try time delays of a quarter of a millisecond up to a few
milliseconds. For delays of about 0.66 millisecond, which is the time delay
for sound to cross the distance spanned by a human head (the so-called
interaural time difference), you will perceive that the sound is coming from
the side with the first arrival of the sound. but more than that, even though
you know the intensity of the sound is the same in both ears, it will sound
much louder in the ear with the first arrival. (High frequencies are more
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Figure 25.3
If you stare at the intersection of two of the
black lines, you will see lighter gray spots at
the adjacent intersections, a clear visual
illusion that is a side effect of our visual
processing algorithms.

shadowed by the head and do result in interaural level differences, also used
as cues for sound localization.)

A visual illusion of the second type, a side effect that probably brings
no advantage, is seen in figure 25.3, where light gray spots appear in the
intersections of black stripes against a white surround. This is an untruth
that results from some no doubt very useful visual algorithms, leading to
distortions of reality with no purpose in special circumstances.

25.2
Sounds That Aren’t There

There are several phenomena related to tones that are perceived but not
present. Perhaps they are the analog of the visual effect just mentioned: side
effects of auditory processing. They go under the names of Tartini tones,
difference tones, combination tones, beat tones, resultant tones, distortion
products, differential tones, summation tones, and no doubt more. Some
of these terms are overlapping, and others have not ever received crisp
definitions or usage. We will not succeed in defining a zoo of these effects
with every one in a different cage.

A difference tone is perceived at the difference frequency f = f2 − f1;
a summation tone at the sum frequency f = f2 + f1. Tartini tones are
generally applied to compound (periodic but not sinusoidal) generators,
whereas difference tones refer to simple sinusoidal generators. We need a
blanket term, one that acknowledges that all these effects, in spite of their
nuances, do share some common roots. We call them phantom tones. A
phantom tone is a tone not in the sound presented to the listener but heard
by the listener nonetheless. Are all the various phantom tones essentially
the same phenomenon?

We have made the case that pitch is not intrinsic to sound and is a
human sensation, so is it not phantom? Pitch and phantom tones are
independent phenomena, because pitch can exist without the perception
of any tone at the frequency of the pitch. For example, a good chime has
a well-defined pitch, yet no partial at that pitch is heard and no sensation
of a tone is present at that frequency. A phantom tone, when it is present,
sounds as real as an instrument playing that note, if faintly.

Hearing Phantom Tones

Combinations of real tones (generating tones) may spawn the sensation
of other tones or partials that aren’t physically present. Phantom tones
sound perfectly real—tones with a pitch—but their perceived strength is
dependent on the listener, context, and training. It is possible to draw
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attention to phantom tones by causing them to change pitch, which can
be done by varying the pitch of the generating tones. Sometimes alternately
removing and restoring a generating tone brings out a phantom tone. These
techniques are analogous to the trick used to make partials stand out—both
cause us to switch from synthetic to analytic listening. Practice makes it
possible to make the switch without such coaxing.

What relation does the frequency of a phantom tone bear to the gen-
erating tones? What is the connection between fast beating and phantom
tones?

A way to discover new phantom tones is to use two pure sinusoidal par-
tials as the generating tones, and then listen for tones at other frequencies.
Some sine tone generating software allows slowly ramping up one partial in
frequency, while keeping another fixed. This can be done using the cursor
control to ramp a partial up or down in frequency in MAX Partials. Some
people seem to have difficulty recognizing phantom tones, possibly because
they have more accurate hearing or are less capable of analytic listening—
it is difficult to tell which. There is growing evidence for a considerable
variability in sound processing in the brain from person to person. A
dramatic example of this is Deutsch’s audio illusion, discussed in section
25.21, which different people hear radically differently. For this reason,
there may be no fixed set of answers to the question of what phantom tones
are heard under a given set of circumstances.

A key question is whether the phantom tones grow louder in proportion
to the generator loudness, or if they respond more dramatically, suggesting
nonlinear effects. You can check this on yourself once you find good
examples; specific cases to try of frequencies f1 and f2 are given in the
following.

25.3
How andWhere Do Phantom Tones Arise?

The debate on the cause of timbre beating is recapitulated in the debate on
the causes of phantom tones.

Mechanical Causes

Camps divide according to what part of the auditory chain is responsible
for phantom tones. Place theorymaintains that the required partials, absent
in the incident sound, are created by the mechanics of the ear, so that
the missing vibrations are actually real by the time they are detected by
the neural system. This is quite possible on general nonlinear mechanical
principles. The presence of two frequencies may in fact generate a third
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frequency or even several new frequencies, which could be a difference of
the two, sum of the two, twice one minus the other, and so on.

Helmholtz was attracted to the idea of nonlinear sound generation in
the ear. His thinking was that if we are frequency analyzers, we cannot
hear a particular frequency or a tone unless it is physically present. Faced
with the absence of the first partial in some complex musical tones—the
residue pitch effect—Helmholtz felt compelled to restore the lowest partial,
to require its physical presence, by saying that it was produced by nonlinear
effects based on the presence of the higher partials. This idea is flawed, since
the residue pitch is not actually accompanied by the ability to hear out a
sinusoidal partial at the frequency of the pitch. In other words, Helmholtz’s
phantom partial is not even perceptually present. He was quite sloppy
about the distinction between tone, pitch, and partial, using the words
interchangeably, when more precision of language was called for. His
translator complained bitterly about this, as we remarked in section 23.9.

Perhaps his mind was clouded by the beauty of the nonlinear idea—if
only it were true! It fits a very pretty physical phenomenon that is nearly
universal for physical systems that vibrate: nonlinear generation of har-
monics and combination tones. Due to this effect, a vibrating system can
be driven at one frequency and generate other frequencies spontaneously.
If the vibrational amplitude is large enough, new frequencies are generated
that are combinations and differences of multiples of the frequencies that
were originally present. Thus, if we force a nonlinear system with sinu-
soidal frequencies f1 and f2, we might see, for example, a new sinusoidal
frequency f = f2 − f1 generated as a response. In Helmholtz’s day,
this notion was new, and it must have been tempting to appeal to this
mechanism in the face of the apparent dominance of the fundamental. It
assigns the perception of pitch at a missing fundamental frequency to a
physical property of the ear, amenable to analysis in terms of relatively
simple nonlinear oscillations. Still, it is surprising that Helmholtz took this
physical, causative path to explaining pitch, since he was comfortable with
psychophysical phenomena. He had already spent much time juggling such
issues in connection with color vision and sight.

Neural Causes and the Auditory Cortex

Timing theory supposes that phantom tone generation lies further up the
neural chain: the nervous system can create, either deliberately or as a side
effect of its algorithms, the sensation of tones that reveal repetitious events
in the sound, present even if the corresponding partials of the same period
are absent.

The auditory cortex stands between the ear and the seat of conscious-
ness. It is divided into three parts with different function. The tertiary
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cortex apparently synthesizes the aural experience before sending it on,
and the secondary cortex apparently processes harmonic, melodic, and
rhythmic patterns. The primary cortex extracts pitch and loudness data,
and is tonotopically organized (different frequency zones in physically
different places). Brain scans show that the primary cortex is not involved
when imagining music, but it is active when schizophrenics have auditory
hallucinations.

Hallucinations

Hallucinations, either visual or auditory, can be indistinguishable from
reality. One of the maladies that Oliver Sacks recounts in his fascinating
book Musicophilia can be distracting to the point of despair: people quite
suddenly hear music that isn’t there, and it doesn’t tend to go away. The
sensation is nothing like the tune you can’t get out of your head. The music
sounds completely real. The genre of the music heard is often not a match
you would imagine for the patient, who may or may not be musically
inclined. If, for whatever reason and through whatever mechanism, the
auditory cortex decides to create and send phony data, there is apparently
no way for our conscious minds to tell it is not real.

What has this anomaly got to do with pitch perception or phantom
tones? The point is that if the auditory cortex can send symphonies that
aren’t there, why couldn’t it more routinely send us the sensation of a “real”
tone, which might sound like a single partial or perhaps a complex tone,
andwhich isn’t physically present but still represents some aspect of the real
sound being processed? Sending such a sensation might serve a purpose or
it might be a side effect of complex processing algorithms.

Otoacoustic Emissions

It is known that the ear emits sounds as well as receives them. Signals from
the nervous system are sent to the cochlea, causing hair cells to contract and
relax at audio frequencies, resulting in sound emission from the ear. (These
otoacoustic emissions were discussed in section 21.4.) The relevance for
the present discussion is that otoacoustic combination tones (called upper
beat tones by Koenig, Zahm, and others) of the form f = 2 f2 − f1 are
quite discernible by the sensitive microphones used to detect otoacoustic
emissions. Thus the combination tones are “really there" in a physical sense
within the ear, but it is still not completely clear how they get produced, or
whether these signals are the ones we hear, and where in the neurological
chain the signals originate.

Helmholtz was wrong about hair cells being little high-Q resonators on
their own, but neural feedback effectively makes them capable of sharp
frequency resolution anyway. It seems likely that Helmholtz was also wrong
about the importance of mechanical nonlinear effects, but this too may be
rescued by nonlinear neural feedback—that is, otoacoustic emissions.
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25.4
Beat Tones

Loudness beats are recognized by a periodic waxing and waning of the
amplitude of the resultant wave.

Phantom Loudness Beat Tones

In figure 24.4, we saw the addition of 25Hz and 27Hz sinusoids of equal
amplitude. (We use smaller frequencies for clarity in plotting.) The GCD of
25Hz and 27Hz is 1Hz, but there are two beats per second, if by beats we
mean broad maxima in the envelope of the higher frequency oscillations.
As inspection of the waveforms reveals (see figure 24.4), the two beats each
second are not quite the same: only every other beat is an exact repeat,
giving a strict periodicity of 1Hz. Nonetheless, it makes little difference
whether the waveform is formally periodic at 1Hz; we hear 2Hz beating
since the sound is louder twice per second.

A Tone at the Beat Frequency?

The beats at the difference frequency are “events” in their own right, even
though there are only two frequencies present. Certainly, we hear those
events if they are slow—as in 200Hz plus 202Hz—as loudness beats at
2Hz. As they get faster, at what point would their presence be completely
inaudible? The point is, there would be some residue of the countable
beats—they would, in fact, remain audible. If the difference frequency is
in the audio range, we hear this periodic sequence of events as a tone. It
may be serving a purpose, to inform us of events at that frequency.

A London police whistle makes just such use of beating of two nearby
high-frequency tones. Suppose the whistle generates a 3000Hz and a
3080Hz tone. The combination beats at 80Hz, well into our hearing
range. The GCD of 1000 and 1080 is 40, which is the frequency of this
combination, also well into our hearing range. The beating tone, however,
is heard at 80Hz, which is the frequency of the waveform pulses. The exact
details of each pulse recur only at 40Hz.

Before Ohm and Helmholtz came along, the issue of phantom tones and
beat tones was thought to be resolved. Thomas Young (figure 25.4), an
amazingly talented British polymath who helped decode the Rosetta Stone
and worked out much of vision theory (and along the way performed an
interference experiment with light that is today a paradigm of quantum
mechanics), took up the question of phantom tones. The subject was
initially raised by the violinist Giuseppe Tartini in 1754 and the German
organist and composer Georg Andreas Sorge in 1745. They had heard the
beat tones as “third notes” when playing two others. It is hardly credible
that it went unnoticed by generations of musicians before. However,

Figure 25.4
Thomas Young (1773–1829). Courtesy
Materialscientist.



October 11, 2012 Time: 12:18pm chapter25.tex

500 Part V Psychoacoustics andMusic

phenomena are often not attributed to their first discoverer, but rather
to someone who described their significance most eloquently. Young
promoted the commonly accepted explanation, until Ohm and Helmholtz
questioned it.

Young and also Joseph Lagrange first argued that beats are events—
that is, loudness peaks owing to constructive interference maxima that
occur repeatedly at the beat frequency. The ear is willing to assign a tone
to this periodic succession of loudness undulations, despite the complete
absence of partials at the frequency of the beat tone. Young said: “The
greater the difference in pitch of two sounds the more rapid the beats, till
at last, like the distinct puffs of air in the experiments already related they
communicate the idea of a continued sound; and this is the fundamental
harmonic described by Tartini.”

Examples of Beat Tones

Even for just two sinusoids, there are all sorts of cases to consider. It is
amazing how many mathematical ramifications there are surrounding the
choice of just two numbers. Is their ratio rational or irrational? Are any
integer ratios, involving small integers, a good approximation to the ratio
of the two? The answers to these questions affect what we hear.

For example, suppose f1 = 1000Hz, f2 = 800Hz. These beat at 200Hz,
and perhaps therefore we will hear a 200Hz tone. But not so fast—200Hz
is also the residue pitch. We should examine instead, say, 1042 and 842Hz.
These are now inharmonic partials, but they differ by 200Hz. Indeed, a
200Hz difference tone—a true phantom tone—is clearly heard, weaker
than the two generators but still quite distinct.

This sheds some light on residue pitch. Nothing drastic happens to
the perceived 200Hz tone in going continuously from 1042 and 842 as
generators to 1000 and 800. This implies that any tone heard along with
the 200Hz pitch is an event tone—that is, a tone generated in our sound
processing hardware and software to signify the occurrence of repetitive
events (beats) at a frequency of 200Hz in either case.

A case is provided by intervals near 8:15, using frequencies such as
f2 = 2048 and f1 = 3840Hz, giving the beat tone f = 2 f2 − f1 of 256Hz,
which indeed is heard. This is also just the frequency of the waveform beats.
If f2 is raised by A Hz, the phantom tone increases by 2A Hz, as does
the frequency of the waveform beating. If f1 is raised by A Hz, the tone
is lowered by AHz, as is the frequency of the waveform beating. The reader
is encouraged to try this, using, if possible, high-quality earbuds and good
tone generators. One may vary f1 by 200Hz in either direction and f is
clearly heard, obeying f = 2 f2 − f1.

Another interval, f2 = 2048 and f1 = 3072Hz (and analogous
intervals), is remarkable in that, first, the difference tone f = f1 − f2 =
1024 and the combination tone f = 2 f2 − f1 = 1024 are the same; thus
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what Koenig termed the lower beat tone (the difference tone) and the upper
beat tone (the combination tone) coincide. This combination has loudness
beats at 1024Hz. If the higher frequency f1 is raised by AHz, the difference
tone should increase by A Hz, but the combination tone should decrease
by A Hz. Indeed, as f1 = 3072 is lowered by hand, as is possible in the
MAX patch Partials, one hears both rising and falling phantom tones (a
rising combination tone and a falling difference tone) interfering with each
other, causing beats when they are still relatively close in frequency. When
f1 = 3073Hz, there should be two beats per second, and that is what is
heard. This is also the frequency of the waveform beats. If, on the other hand,
the lower frequency is raised by AHz, the difference tone should decrease
by A Hz, but the combination tone should increase by 2A Hz, implying a
beating of between them of 3AHz. That is heard also. Quite an instructive
example!We are feeding our ears only two pure tones, both above 2000Hz,
yet we are discussing the easily audible beating of two phantom tones, both
around 1000Hz!

25.5
Nonlinear Harmonic Generation

The key to hearing interesting phantom tones is to make sure they do
not already exist in the sound presented to the listener, owing to some
quite common imperfections in the production of sound. In the old days,
Helmholtz, Seebeck, Ohm, and especially Koenig went to extraordinary
lengths to ensure that there were only pure sinusoids coming from tuning
forks, sirens attached to resonators, and the like. Nonetheless, aspersions
were sometimes cast regarding the purity of a competing researcher’s
sound sources. Today, professional-level recording and playback equip-
ment may be employed to ensure the near absence of contaminating
frequencies. Laptops and earbuds may not be free of such problems.

When a single vibration mode is present—that is, a single simple
oscillator such as a real (as opposed to an ideal) pendulum—an oscillator
forced sinusoidally at frequency f may generate other frequencies 2 f ,
3 f . . . as well. This is called harmonic generation, but it may sound like
old news: don’t simple strings have harmonics? They do, but the situation
is quite different. In a string, eachmode f , 2 f , . . . . is an oscillator in its own
right—a string has many different vibration modes. Also, in real strings the
higher modes will not be quite exactly integer multiples of the lowest mode
frequency, so that the second partial of a string might be 401.3Hz if the
first partial is 200Hz. If on the other hand a single mode is oscillating in a
periodic but not sinusoidal way, higher harmonics must be present and are
exact multiples of the lowest frequency. An ideal pendulum or mass and
spring oscillates sinusoidally, so just one frequency is present. Harmonic
generation is associated with “nonlinear” vibration. We can get a feel for
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Box 25.1
Experiment in Nonlinear Harmonic Generation

Figure 25.6 is an instructive case
study in nonlinear generation of
tones that are not there in the original
signal. They were generated by delib-
erately overdriving cheap analog
electronics (earbuds and micro-
phone). The sinusoidal frequencies
f1 and f2 were generated on a laptop

(the frequency of f2 was ramped up
linearly with time) and fed at loud
volume to earbuds, one of which
was placed very close to the inex-
pensive microphone of a dictation
headset. The digital sound generated
by the computer thus passed through
analog stages (earbuds, microphone)

before becoming digital data again in
the computer. The analog processes
are subject to harmonic generation
and other nonlinear distortions,
which become evident in the sono-
gram of the data.

0.5f1 f1 1.5f1
f2

3f1

2f1

f1

f2

2f2

3f2

2f1–f2
2f2–f1

f2–f1f1–f2

Figure 25.6
(Left) The thick black and red lines represent a fixed sinusoidal partial f1 and a rising
partial f2. Harmonics and difference frequencies are shown in lighter lines. For frequency
f2 and fixed f1, several harmonics and difference tone frequencies for the lowest orders
are shown. It is seen that sometimes there are coincidences of various orders—that is,
where the light lines intersect. For high-pitched f1 and f2, the important phantom tones
are below, and sometimes well below, f1 and f2. (Right) Sonogram obtained as follows:
The sine tones f1 and f2 were generated on a laptop (the frequency of f2 was ramped up
linearly with time) and fed at loud volume to earbuds, one of which was placed very
close to the microphone of a dictation headset. The digital sound generated by the
computer thus passed through analog stages (earbuds, microphone) before becoming
digital data again in the computer. The analog processes are subject to harmonic gene-
ration and other nonlinear distortions, leading to the weaker lines seen corresponding
to the tones specified on the left, as well as others not shown on the left. The hardware
produces distortion products, which if presented to the ear are real, not phantom.
Helmholtz suggested that this kind of distortion happens mechanically in the ear, so
that the phantom tones we hear are in fact real by the time they are detected.
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Box 25.2
Rudolph Koenig

Rudolph Koenig was a unique figure
in acoustics. Koenig did not do well
in college (he had trouble with lan-
guages) and apparently never wanted
to be a part of the academic establish-
ment. He became, nonetheless, a key
player in the scientific controversies
of his day concerning acoustics and
perception. He made a living selling
demonstration equipment and scient-
ific instruments. Born in Königsberg,
he apprenticed for eight years under
the violin maker Jean Baptiste Vuilla-
ume. He began a new career making
scientific instruments and a few years
later had earned a reputation as per-
haps the most talented and brilliant
instrument maker of his time, a true
artisan. His instruments were exclusi-
vely for the purpose of demonstra-
tions of sound and hearing. He was
also a creative and talented scientist,
involved in the acoustical controver-
sies of his day (and our day, as we
have said). He built better and better
instruments to answer the key experi-
mental questions, and other innovat-
ions meant to illustrate fundamental
acoustical principles and his interpre-
tation of the questions surrounding
human hearing. Koenig became one
of the best researchers in acoustics,
at first refining and supporting
Helmholtz’s ideas. Later, he became
Helmholtz’s strongest and most effe-
ctive critic, often using devices of his
own design, remarkable considering
Helmholtz’s stature and the fact that
Koenig was not formally educated
beyond secondary school.

Koenig had a reputation for meti-
culous integrity. His reputation for
well-conceived experiments and fine
instruments was without peer. Alth-
ough he sometimes put Helmholz’s
ideas into their finest experimental
form, and improved many other inst-
ruments, he is best known for making
by far the most complete and accu-
rate sets of tuning forks and putting
them to remarkable uses. The import-
ance of high-quality tuning forks as
standards and investigative instrume-
nts is easy to underestimate in a digi-
tal world. A Koenig tour de force was
displayed at the Philadelphia Exposi-
tion of 1876: a “tonometric” appara-
tus consisting of 670 tuning forks,
of different pitches covering four
octaves.
Getting the right answers to the

subtle questions surrounding the
origin of phantom tones requires
instruments of high precision, and
most precise among these was the
tuning fork. The key was to make
each fork emit a single pure sinusoid.
Even today, it is no mean feat to
ensure that loudspeakers and micro-
phone are operating in the purely
linear regime, where distortion pro-
ducts play no role. And even today,
the gold standard in tuning forks are
those made by Koenig.
He enjoyed presenting acoustic

and perceptual phenomena to
relatively large groups. Scientists,
students, musicians, and craftspeople
gathered at Koenig’s workshop from
all over Europe and America. It was a

unique place—part home, part
commercial space, part institute.
They enjoyed Koenig’s remarkable
scientific and musical demonstra-
tions, part seance and part seminar.
One could not disentangle business
and science at Koenig’s shop. All this
took place in the atmosphere of
friendliness and the highest traditions
of craftsmanship.

Like Seebeck, Koenig took issue
with the assertion that pitch is
associated with pure partials of the
same frequency. Instead, Koenig
asserted that pitch and tones sprang
from periodicity, which as he knew
could exist without a partial of the
same period. Seebeck the school-
master and Koenig the artisan were
right, but their opinion did not carry
against the Aristotelian weight of
Helmholtz. Even so, it is widely
acknowledged that Koenig gave
Helmholtz a run for his money on
key issues surrounding pitch perce-
ption, the nature of difference tones,
beat tones, and so on. Some con-
temporaries even thought Helmholtz
lost the arguments. Careful reading
and testing of Koenig’s arguments
and examples are convincing reg-
arding the correctness of his main
ideas, if not all the details. This is not
to diminish Helmholtz, a truly great
physicist. The issue remained contro-
versial for a long time, even up to the
present, as such issues do in science
when truth and authority do not
coincide.
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Figure 25.5
Amplitude of a pendulum versus time for
nearly vertical initial displacement. The
damping was set to zero, and there was
no forcing. Notice the distinctly
nonsinusoidal oscillation, which through
Fourier’s theorem will require harmonics
of the fundamental frequency in order to
reproduce the curve.

generation of new frequencies owing to nonlinear effects by considering a
real pendulum at large oscillation amplitudes (figure 25.5). The pendulum
was released from rest in a nearly inverted position, so it swings back
and forth almost full circle. The pendulum is slow to fall away from the
nearly inverted position; this causes a nonsinusoidal shape in the plot of the
amplitude versus time. Higher multiples of the fundamental frequency—
that is, higher harmonics—will be required to describe this flat-topped
curve; something vibrating in this way will emit these higher harmonics
as well as the fundamental. If the moving parts of the ear are nonlinear
oscillators, they could generate the “aural harmonics” 2 f , 3 f, . . . if forced
at frequency f . Or the harmonics could be caused by neural feedback to
the hair cells.


